refactor: Rename DocumentMeanAveragePrecision and DocumentMeanReciprocalRank (#7470)

* Rename DocumentMeanAveragePrecision and DocumentMeanReciprocalRank

* Update releasenotes

* Simplify names
This commit is contained in:
Silvano Cerza 2024-04-04 17:04:59 +02:00 committed by GitHub
parent bf8453e48e
commit 8b8a93bc0d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 24 additions and 24 deletions

View File

@ -4,20 +4,20 @@ from haystack import Document, component
@component
class DocumentMeanAveragePrecision:
class DocumentMAPEvaluator:
"""
Evaluator that calculates the mean average precision of the retrieved documents, a metric
that measures how high retrieved documents are ranked.
Each question can have multiple ground truth documents and multiple retrieved documents.
`DocumentMeanAveragePrecision` doesn't normalize its inputs, the `DocumentCleaner` component
`DocumentMAPEvaluator` doesn't normalize its inputs, the `DocumentCleaner` component
should be used to clean and normalize the documents before passing them to this evaluator.
Usage example:
```python
from haystack.components.evaluators import AnswerExactMatchEvaluator
evaluator = DocumentMeanAveragePrecision()
evaluator = DocumentMAPEvaluator()
result = evaluator.run(
ground_truth_documents=[
[Document(content="France")],
@ -41,7 +41,7 @@ class DocumentMeanAveragePrecision:
self, ground_truth_documents: List[List[Document]], retrieved_documents: List[List[Document]]
) -> Dict[str, Any]:
"""
Run the DocumentMeanAveragePrecision on the given inputs.
Run the DocumentMAPEvaluator on the given inputs.
All lists must have the same length.
:param ground_truth_documents:

View File

@ -4,20 +4,20 @@ from haystack import Document, component
@component
class DocumentMeanReciprocalRank:
class DocumentMRREvaluator:
"""
Evaluator that calculates the mean reciprocal rank of the retrieved documents.
MRR measures how high the first retrieved document is ranked.
Each question can have multiple ground truth documents and multiple retrieved documents.
`DocumentMeanReciprocalRank` doesn't normalize its inputs, the `DocumentCleaner` component
`DocumentMRREvaluator` doesn't normalize its inputs, the `DocumentCleaner` component
should be used to clean and normalize the documents before passing them to this evaluator.
Usage example:
```python
from haystack.components.evaluators import AnswerExactMatchEvaluator
evaluator = DocumentMeanReciprocalRank()
evaluator = DocumentMRREvaluator()
result = evaluator.run(
ground_truth_documents=[
[Document(content="France")],
@ -40,7 +40,7 @@ class DocumentMeanReciprocalRank:
self, ground_truth_documents: List[List[Document]], retrieved_documents: List[List[Document]]
) -> Dict[str, Any]:
"""
Run the DocumentMeanReciprocalRank on the given inputs.
Run the DocumentMRREvaluator on the given inputs.
`ground_truth_documents` and `retrieved_documents` must have the same length.

View File

@ -1,4 +1,4 @@
---
features:
- |
Add DocumentMeanAveragePrecision, it can be used to calculate mean average precision of retrieved documents.
Add DocumentMAPEvaluator, it can be used to calculate mean average precision of retrieved documents.

View File

@ -1,4 +1,4 @@
---
features:
- |
Add DocumentMeanReciprocalRank, it can be used to calculate mean reciprocal rank of retrieved documents.
Add DocumentMRREvaluator, it can be used to calculate mean reciprocal rank of retrieved documents.

View File

@ -1,11 +1,11 @@
import pytest
from haystack import Document
from haystack.components.evaluators.document_map import DocumentMeanAveragePrecision
from haystack.components.evaluators.document_map import DocumentMAPEvaluator
def test_run_with_all_matching():
evaluator = DocumentMeanAveragePrecision()
evaluator = DocumentMAPEvaluator()
result = evaluator.run(
ground_truth_documents=[[Document(content="Berlin")], [Document(content="Paris")]],
retrieved_documents=[[Document(content="Berlin")], [Document(content="Paris")]],
@ -15,7 +15,7 @@ def test_run_with_all_matching():
def test_run_with_no_matching():
evaluator = DocumentMeanAveragePrecision()
evaluator = DocumentMAPEvaluator()
result = evaluator.run(
ground_truth_documents=[[Document(content="Berlin")], [Document(content="Paris")]],
retrieved_documents=[[Document(content="Paris")], [Document(content="London")]],
@ -25,7 +25,7 @@ def test_run_with_no_matching():
def test_run_with_partial_matching():
evaluator = DocumentMeanAveragePrecision()
evaluator = DocumentMAPEvaluator()
result = evaluator.run(
ground_truth_documents=[[Document(content="Berlin")], [Document(content="Paris")]],
retrieved_documents=[[Document(content="Berlin")], [Document(content="London")]],
@ -35,7 +35,7 @@ def test_run_with_partial_matching():
def test_run_with_complex_data():
evaluator = DocumentMeanAveragePrecision()
evaluator = DocumentMAPEvaluator()
result = evaluator.run(
ground_truth_documents=[
[Document(content="France")],
@ -64,14 +64,14 @@ def test_run_with_complex_data():
def test_run_with_different_lengths():
with pytest.raises(ValueError):
evaluator = DocumentMeanAveragePrecision()
evaluator = DocumentMAPEvaluator()
evaluator.run(
ground_truth_documents=[[Document(content="Berlin")]],
retrieved_documents=[[Document(content="Berlin")], [Document(content="London")]],
)
with pytest.raises(ValueError):
evaluator = DocumentMeanAveragePrecision()
evaluator = DocumentMAPEvaluator()
evaluator.run(
ground_truth_documents=[[Document(content="Berlin")], [Document(content="Paris")]],
retrieved_documents=[[Document(content="Berlin")]],

View File

@ -1,11 +1,11 @@
import pytest
from haystack import Document
from haystack.components.evaluators.document_mrr import DocumentMeanReciprocalRank
from haystack.components.evaluators.document_mrr import DocumentMRREvaluator
def test_run_with_all_matching():
evaluator = DocumentMeanReciprocalRank()
evaluator = DocumentMRREvaluator()
result = evaluator.run(
ground_truth_documents=[[Document(content="Berlin")], [Document(content="Paris")]],
retrieved_documents=[[Document(content="Berlin")], [Document(content="Paris")]],
@ -15,7 +15,7 @@ def test_run_with_all_matching():
def test_run_with_no_matching():
evaluator = DocumentMeanReciprocalRank()
evaluator = DocumentMRREvaluator()
result = evaluator.run(
ground_truth_documents=[[Document(content="Berlin")], [Document(content="Paris")]],
retrieved_documents=[[Document(content="Paris")], [Document(content="London")]],
@ -25,7 +25,7 @@ def test_run_with_no_matching():
def test_run_with_partial_matching():
evaluator = DocumentMeanReciprocalRank()
evaluator = DocumentMRREvaluator()
result = evaluator.run(
ground_truth_documents=[[Document(content="Berlin")], [Document(content="Paris")]],
retrieved_documents=[[Document(content="Berlin")], [Document(content="London")]],
@ -35,7 +35,7 @@ def test_run_with_partial_matching():
def test_run_with_complex_data():
evaluator = DocumentMeanReciprocalRank()
evaluator = DocumentMRREvaluator()
result = evaluator.run(
ground_truth_documents=[
[Document(content="France")],
@ -68,14 +68,14 @@ def test_run_with_complex_data():
def test_run_with_different_lengths():
with pytest.raises(ValueError):
evaluator = DocumentMeanReciprocalRank()
evaluator = DocumentMRREvaluator()
evaluator.run(
ground_truth_documents=[[Document(content="Berlin")]],
retrieved_documents=[[Document(content="Berlin")], [Document(content="London")]],
)
with pytest.raises(ValueError):
evaluator = DocumentMeanReciprocalRank()
evaluator = DocumentMRREvaluator()
evaluator.run(
ground_truth_documents=[[Document(content="Berlin")], [Document(content="Paris")]],
retrieved_documents=[[Document(content="Berlin")]],