fix: Document v2 JSON serialization (#4863)

* fix json serialization

* add missing markers

* pylint

* fix decoder bug

* pylint

* add some more tests

* linting & windows

* windows

* windows

* windows paths again
This commit is contained in:
ZanSara 2023-05-15 11:39:04 +02:00 committed by GitHub
parent bffe2d8c19
commit 8fbfca9ebb
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 396 additions and 12 deletions

View File

@ -1,4 +1,4 @@
from typing import List, Any, Dict, Literal, Optional
from typing import List, Any, Dict, Literal, Optional, Type
import json
import hashlib
@ -34,10 +34,10 @@ def _create_id(
"""
Creates a hash of the content given that acts as the document's ID.
"""
if not metadata:
metadata = {}
content_to_hash = f"{classname}:{content}"
if id_hash_keys:
if not metadata:
raise ValueError("If 'id_hash_keys' is provided, you must provide 'metadata' too.")
content_to_hash = ":".join([content_to_hash, *[str(metadata.get(key, "")) for key in id_hash_keys]])
return hashlib.sha256(str(content_to_hash).encode("utf-8")).hexdigest()
@ -61,6 +61,47 @@ def _safe_equals(obj_1, obj_2) -> bool:
return obj_1 == obj_2
class DocumentEncoder(json.JSONEncoder):
"""
Encodes more exotic datatypes like pandas dataframes or file paths.
"""
def default(self, obj):
if isinstance(obj, numpy.ndarray):
return obj.tolist()
if isinstance(obj, pandas.DataFrame):
return obj.to_json()
if isinstance(obj, Path):
return str(obj.absolute())
try:
return json.JSONEncoder.default(self, obj)
except TypeError:
return str(obj)
class DocumentDecoder(json.JSONDecoder):
"""
Decodes more exotic datatypes like pandas dataframes or file paths.
"""
def __init__(self, *_, object_hook=None, **__):
super().__init__(object_hook=object_hook or self.document_decoder)
def document_decoder(self, dictionary):
# Decode content types
if "content_type" in dictionary:
if dictionary["content_type"] == "table":
dictionary["content"] = pandas.read_json(dictionary.get("content", None))
elif dictionary["content_type"] == "image":
dictionary["content"] = Path(dictionary.get("content", None))
# Decode embeddings
if "embedding" in dictionary and dictionary.get("embedding"):
dictionary["embedding"] = numpy.array(dictionary.get("embedding"))
return dictionary
@dataclass(frozen=True)
class Document:
"""
@ -106,6 +147,11 @@ class Document:
content.
"""
# Validate content_type
if self.content_type not in PYTHON_TYPES_FOR_CONTENT:
raise ValueError(
f"Content type unknown: '{self.content_type}'. "
f"Choose among: {', '.join(PYTHON_TYPES_FOR_CONTENT.keys())}"
)
if not isinstance(self.content, PYTHON_TYPES_FOR_CONTENT[self.content_type]):
raise ValueError(
f"The type of content ({type(self.content)}) does not match the "
@ -139,11 +185,11 @@ class Document:
"""
return asdict(self)
def to_json(self, **json_kwargs):
def to_json(self, json_encoder: Optional[Type[DocumentEncoder]] = None, **json_kwargs):
"""
Saves the Document into a JSON string that can be later loaded back.
"""
return json.dumps(self.to_dict(), **json_kwargs)
return json.dumps(self.to_dict(), cls=json_encoder or DocumentEncoder, **json_kwargs)
@classmethod
def from_dict(cls, dictionary):
@ -153,11 +199,11 @@ class Document:
return cls(**dictionary)
@classmethod
def from_json(cls, data, **json_kwargs):
def from_json(cls, data, json_decoder: Optional[Type[DocumentDecoder]] = None, **json_kwargs):
"""
Creates a new Document object from a JSON string.
"""
dictionary = json.loads(data, **json_kwargs)
dictionary = json.loads(data, cls=json_decoder or DocumentDecoder, **json_kwargs)
return cls.from_dict(dictionary=dictionary)
def flatten(self) -> Dict[str, Any]:

View File

@ -1,12 +1,13 @@
from pathlib import Path
import dataclasses
import textwrap
import pytest
import pandas as pd
import numpy as np
from haystack.preview import Document
from haystack.preview.dataclasses.document import _create_id
from haystack.preview.dataclasses.document import _create_id, DocumentEncoder, DocumentDecoder
@pytest.mark.unit
@ -16,6 +17,58 @@ def test_document_is_immutable():
doc.content = "won't work"
@pytest.mark.unit
def test_content_type_unknown():
with pytest.raises(ValueError, match="Content type unknown: 'other'"):
Document(content="test content", content_type="other")
@pytest.mark.unit
def test_content_type_must_match_text():
Document(content="test content")
Document(content="test content", content_type="text")
with pytest.raises(ValueError, match="does not match the content type"):
Document(content="test content", content_type="table")
with pytest.raises(ValueError, match="does not match the content type"):
Document(content="test content", content_type="image")
with pytest.raises(ValueError, match="does not match the content type"):
Document(content="test content", content_type="audio")
@pytest.mark.unit
def test_content_type_must_match_table():
with pytest.raises(ValueError, match="does not match the content type"):
Document(content=pd.DataFrame([1, 2]), content_type="text")
with pytest.raises(ValueError, match="does not match the content type"):
Document(content=pd.DataFrame([1, 2]), content_type="image")
with pytest.raises(ValueError, match="does not match the content type"):
Document(content=pd.DataFrame([1, 2]), content_type="audio")
@pytest.mark.unit
def test_content_type_must_match_image_audio():
# Mimetypes are not checked - yet
Document(content=Path(__file__), content_type="image")
Document(content=Path(__file__), content_type="audio")
with pytest.raises(ValueError, match="does not match the content type"):
Document(content=Path(__file__), content_type="text")
with pytest.raises(ValueError, match="does not match the content type"):
Document(content=Path(__file__), content_type="table")
@pytest.mark.unit
def test_id_hash_keys_require_metadata():
with pytest.raises(ValueError, match="must be present in the metadata of the Document if you want to use it"):
Document(content="test content", id_hash_keys=["something"])
@pytest.mark.unit
def test_init_document_same_meta_as_main_fields():
"""
@ -26,10 +79,9 @@ def test_init_document_same_meta_as_main_fields():
@pytest.mark.unit
def test_simple_text_document_equality():
doc1 = Document(content="test content")
doc2 = Document(content="test content")
assert doc1 == doc2
def test_basic_equality_type_mismatch():
doc = Document(content="test content")
assert doc != "test content"
@pytest.mark.unit
@ -74,6 +126,13 @@ def test_equality_with_simple_metadata():
assert doc1 == doc2
@pytest.mark.unit
def test_equality_with_different_metadata():
doc1 = Document(content="test content", metadata={"value": 1})
doc2 = Document(content="test content", metadata={"value": 1, "another": "value"})
assert doc1 != doc2
@pytest.mark.unit
def test_equality_with_nested_metadata():
doc1 = Document(content="test content", metadata={"value": {"another": "value"}})
@ -248,6 +307,282 @@ def test_document_with_most_attributes_from_dict():
)
@pytest.mark.unit
def test_default_text_document_to_json():
doc_id = _create_id(classname=Document.__name__, content="test content")
doc_1 = Document(content="test content").to_json(indent=4).strip()
doc_2 = textwrap.dedent(
""" {
"id": \""""
+ doc_id
+ """\",
"content": "test content",
"content_type": "text",
"metadata": {},
"id_hash_keys": [],
"score": null,
"embedding": null
}"""
).strip()
assert doc_1 == doc_2
@pytest.mark.unit
def test_default_text_document_from_json():
doc_id = _create_id(classname=Document.__name__, content="test content")
doc_1 = Document(content="test content")
doc_2 = Document.from_json(
"""{"id": \""""
+ doc_id
+ """\",
"content": "test content",
"content_type": "text",
"metadata": {},
"id_hash_keys": [],
"score": null,
"embedding": null
}"""
)
assert doc_1 == doc_2
@pytest.mark.unit
def test_default_table_document_to_json():
df = pd.DataFrame([1, 2])
doc_id = _create_id(classname=Document.__name__, content=df)
doc_1 = Document(content=df, content_type="table").to_json(indent=4).strip()
doc_2 = textwrap.dedent(
""" {
"id": \""""
+ doc_id
+ """\",
"content": \""""
+ df.to_json().replace('"', '\\"')
+ """\",
"content_type": "table",
"metadata": {},
"id_hash_keys": [],
"score": null,
"embedding": null
}"""
).strip()
assert doc_1 == doc_2
@pytest.mark.unit
def test_default_table_document_from_json():
df = pd.DataFrame([1, 2])
doc_id = _create_id(classname=Document.__name__, content=pd.DataFrame([1, 2]))
doc_1 = Document(content=df, content_type="table")
doc_2 = Document.from_json(
"""{
"id": \""""
+ doc_id
+ """\",
"content": \""""
+ pd.DataFrame([1, 2]).to_json().replace('"', '\\"')
+ """\",
"content_type": "table",
"metadata": {},
"id_hash_keys": [],
"score": null,
"embedding": null
}"""
)
assert doc_1 == doc_2
@pytest.mark.unit
def test_default_image_document_to_json():
path = Path(__file__).parent / "test_files" / "apple.jpg"
doc_id = _create_id(classname=Document.__name__, content=path)
doc_1 = Document(content=path, content_type="image").to_json(indent=4).strip()
doc_2 = textwrap.dedent(
""" {
"id": \""""
+ doc_id
+ """\",
"content": \""""
+ str(path.absolute()).replace("\\", "\\\\")
+ """\",
"content_type": "image",
"metadata": {},
"id_hash_keys": [],
"score": null,
"embedding": null
}"""
).strip()
assert doc_1 == doc_2
@pytest.mark.unit
def test_default_image_document_from_json():
path = Path(__file__).parent / "test_files" / "apple.jpg"
doc_id = _create_id(classname=Document.__name__, content=path)
doc_1 = Document(content=path, content_type="image")
doc_2 = Document.from_json(
"""{"id": \""""
+ doc_id
+ """\",
"content": \""""
+ str(path.absolute()).replace("\\", "\\\\")
+ """\",
"content_type": "image",
"metadata": {},
"id_hash_keys": [],
"score": null,
"embedding": null
}"""
)
assert doc_1 == doc_2
@pytest.mark.unit
def test_full_document_to_json(tmp_path):
class TestClass:
def __repr__(self):
return "<the object>"
doc_id = _create_id(classname=Document.__name__, content="test content")
doc_1 = Document(
content="test content",
metadata={"some object": TestClass(), "a path": tmp_path / "test.txt"},
embedding=np.array([1, 2, 3, 4]),
)
doc_json = doc_1.to_json(indent=4).strip()
doc_2 = textwrap.dedent(
""" {
"id": \""""
+ doc_id
+ """\",
"content": "test content",
"content_type": "text",
"metadata": {
"some object": "<the object>",
"a path": \""""
+ str((tmp_path / "test.txt").absolute()).replace("\\", "\\\\")
+ """\"
},
"id_hash_keys": [],
"score": null,
"embedding": [
1,
2,
3,
4
]
}"""
).strip()
assert doc_json == doc_2
@pytest.mark.unit
def test_full_document_from_json(tmp_path):
doc_id = _create_id(classname=Document.__name__, content="test content")
doc_1 = Document(
content="test content",
metadata={"a path": str(tmp_path / "test.txt")}, # Paths are not cast back to Path objects
embedding=np.array([1, 2, 3, 4]),
)
doc_2 = Document.from_json(
"""{"id": \""""
+ doc_id
+ """\",
"content": "test content",
"content_type": "text",
"metadata": {
"a path": \""""
+ str((tmp_path / "test.txt").absolute()).replace("\\", "\\\\")
+ """\"
},
"id_hash_keys": [],
"score": null,
"embedding": [
1,
2,
3,
4
]
}"""
)
assert doc_1 == doc_2
@pytest.mark.unit
def test_to_json_custom_encoder(tmp_path):
class SerializableTestClass:
...
class TestEncoder(DocumentEncoder):
def default(self, obj):
if isinstance(obj, SerializableTestClass):
return "<<CUSTOM ENCODING>>"
return DocumentEncoder.default(self, obj)
doc_id = _create_id(classname=Document.__name__, content="test content")
doc = Document(content="test content", metadata={"some object": SerializableTestClass()})
doc_json = doc.to_json(indent=4, json_encoder=TestEncoder).strip()
assert (
doc_json
== textwrap.dedent(
""" {
"id": \""""
+ doc_id
+ """\",
"content": "test content",
"content_type": "text",
"metadata": {
"some object": "<<CUSTOM ENCODING>>"
},
"id_hash_keys": [],
"score": null,
"embedding": null
}"""
).strip()
)
@pytest.mark.unit
def test_from_json_custom_decoder():
class TestClass:
def __eq__(self, other):
return type(self) == type(other)
class TestDecoder(DocumentDecoder):
def __init__(self, *args, **kwargs):
super().__init__(object_hook=self.object_hook)
def object_hook(self, dictionary):
if "metadata" in dictionary:
for key, value in dictionary["metadata"].items():
if value == "<<CUSTOM ENCODING>>":
dictionary["metadata"][key] = TestClass()
return dictionary
doc_id = _create_id(classname=Document.__name__, content="test content")
doc = Document(content="test content", metadata={"some object": TestClass()})
assert doc == Document.from_json(
""" {
"id": \""""
+ doc_id
+ """\",
"content": "test content",
"content_type": "text",
"metadata": {
"some object": "<<CUSTOM ENCODING>>"
},
"id_hash_keys": [],
"score": null,
"embedding": null
}""",
json_decoder=TestDecoder,
)
@pytest.mark.unit
def test_flatten_text_document_no_meta():
assert Document(content="test content").flatten() == {
"id": _create_id(classname=Document.__name__, content="test content"),
@ -259,6 +594,7 @@ def test_flatten_text_document_no_meta():
}
@pytest.mark.unit
def test_flatten_text_document():
assert Document(content="test content", metadata={"name": "document name", "page": 123}).flatten() == {
"id": _create_id(classname=Document.__name__, content="test content"),
@ -272,6 +608,7 @@ def test_flatten_text_document():
}
@pytest.mark.unit
def test_flatten_table_document():
df = pd.DataFrame([1, 2])
flat = Document(content=df, content_type="table", metadata={"table-name": "table title", "section": 3}).flatten()
@ -289,6 +626,7 @@ def test_flatten_table_document():
}
@pytest.mark.unit
def test_flatten_image_document():
path = Path(__file__).parent / "test_files" / "apple.jpg"
assert Document(