mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-11-16 01:54:35 +00:00
Update faq model (#1401)
This commit is contained in:
parent
e4c3c3d423
commit
980d88a0f2
@ -162,7 +162,7 @@
|
|||||||
"document_store = ElasticsearchDocumentStore(host=\"localhost\", username=\"\", password=\"\",\n",
|
"document_store = ElasticsearchDocumentStore(host=\"localhost\", username=\"\", password=\"\",\n",
|
||||||
" index=\"document\",\n",
|
" index=\"document\",\n",
|
||||||
" embedding_field=\"question_emb\",\n",
|
" embedding_field=\"question_emb\",\n",
|
||||||
" embedding_dim=768,\n",
|
" embedding_dim=384,\n",
|
||||||
" excluded_meta_data=[\"question_emb\"])"
|
" excluded_meta_data=[\"question_emb\"])"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@ -182,7 +182,7 @@
|
|||||||
"execution_count": null,
|
"execution_count": null,
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"retriever = EmbeddingRetriever(document_store=document_store, embedding_model=\"deepset/sentence_bert\", use_gpu=True)"
|
"retriever = EmbeddingRetriever(document_store=document_store, embedding_model=\"sentence-transformers/all-MiniLM-L6-v2\", use_gpu=True)"
|
||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"collapsed": false,
|
"collapsed": false,
|
||||||
|
|||||||
@ -35,7 +35,7 @@ def tutorial4_faq_style_qa():
|
|||||||
document_store = ElasticsearchDocumentStore(host="localhost", username="", password="",
|
document_store = ElasticsearchDocumentStore(host="localhost", username="", password="",
|
||||||
index="document",
|
index="document",
|
||||||
embedding_field="question_emb",
|
embedding_field="question_emb",
|
||||||
embedding_dim=768,
|
embedding_dim=384,
|
||||||
excluded_meta_data=["question_emb"],
|
excluded_meta_data=["question_emb"],
|
||||||
similarity="cosine")
|
similarity="cosine")
|
||||||
|
|
||||||
@ -43,7 +43,7 @@ def tutorial4_faq_style_qa():
|
|||||||
# Instead of retrieving via Elasticsearch's plain BM25, we want to use vector similarity of the questions (user question vs. FAQ ones).
|
# Instead of retrieving via Elasticsearch's plain BM25, we want to use vector similarity of the questions (user question vs. FAQ ones).
|
||||||
# We can use the `EmbeddingRetriever` for this purpose and specify a model that we use for the embeddings.
|
# We can use the `EmbeddingRetriever` for this purpose and specify a model that we use for the embeddings.
|
||||||
#
|
#
|
||||||
retriever = EmbeddingRetriever(document_store=document_store, embedding_model="deepset/sentence_bert", use_gpu=True)
|
retriever = EmbeddingRetriever(document_store=document_store, embedding_model="sentence-transformers/all-MiniLM-L6-v2", use_gpu=True)
|
||||||
|
|
||||||
# Download a csv containing some FAQ data
|
# Download a csv containing some FAQ data
|
||||||
# Here: Some question-answer pairs related to COVID-19
|
# Here: Some question-answer pairs related to COVID-19
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user