mirror of
https://github.com/deepset-ai/haystack.git
synced 2026-01-06 12:07:04 +00:00
Extend TranslationWrapper to work with QA Generation (#1905)
* draft translationwrapper example * draft translation of generated qa pairs * Add latest docstring and tutorial changes * fixed pass by reference by deepcopy * delete adapted tutorial 13 (test purposes only) * adapt method signature and doc string * Add latest docstring and tutorial changes * add type ignore * extend tutorial 13 with TranslationWrapper example * Add latest docstring and tutorial changes * removed duplicate code * indent if statement Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> Co-authored-by: ArzelaAscoIi <kristof.herrmann@rwth-aachen.de>
This commit is contained in:
parent
a94c274134
commit
a846be99d1
@ -15,7 +15,7 @@ Abstract class for a Translator component that translates either a query or a do
|
||||
|
||||
```python
|
||||
| @abstractmethod
|
||||
| translate(query: Optional[str] = None, documents: Optional[Union[List[Document], List[Answer], List[str], List[Dict[str, Any]]]] = None, dict_key: Optional[str] = None) -> Union[str, List[Document], List[Answer], List[str], List[Dict[str, Any]]]
|
||||
| translate(results: List[Dict[str, Any]] = None, query: Optional[str] = None, documents: Optional[Union[List[Document], List[Answer], List[str], List[Dict[str, Any]]]] = None, dict_key: Optional[str] = None) -> Union[str, List[Document], List[Answer], List[str], List[Dict[str, Any]]]
|
||||
```
|
||||
|
||||
Translate the passed query or a list of documents from language A to B.
|
||||
@ -24,7 +24,7 @@ Translate the passed query or a list of documents from language A to B.
|
||||
#### run
|
||||
|
||||
```python
|
||||
| run(query: Optional[str] = None, documents: Optional[Union[List[Document], List[Answer], List[str], List[Dict[str, Any]]]] = None, answers: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, dict_key: Optional[str] = None)
|
||||
| run(results: List[Dict[str, Any]] = None, query: Optional[str] = None, documents: Optional[Union[List[Document], List[Answer], List[str], List[Dict[str, Any]]]] = None, answers: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, dict_key: Optional[str] = None)
|
||||
```
|
||||
|
||||
Method that gets executed when this class is used as a Node in a Haystack Pipeline
|
||||
@ -90,13 +90,14 @@ They also have a few multilingual models that support multiple languages at once
|
||||
#### translate
|
||||
|
||||
```python
|
||||
| translate(query: Optional[str] = None, documents: Optional[Union[List[Document], List[Answer], List[str], List[Dict[str, Any]]]] = None, dict_key: Optional[str] = None) -> Union[str, List[Document], List[Answer], List[str], List[Dict[str, Any]]]
|
||||
| translate(results: List[Dict[str, Any]] = None, query: Optional[str] = None, documents: Optional[Union[List[Document], List[Answer], List[str], List[Dict[str, Any]]]] = None, dict_key: Optional[str] = None) -> Union[str, List[Document], List[Answer], List[str], List[Dict[str, Any]]]
|
||||
```
|
||||
|
||||
Run the actual translation. You can supply a query or a list of documents. Whatever is supplied will be translated.
|
||||
|
||||
**Arguments**:
|
||||
|
||||
- `results`: Generated QA pairs to translate
|
||||
- `query`: The query string to translate
|
||||
- `documents`: The documents to translate
|
||||
- `dict_key`: If you pass a dictionary in `documents`, you can specify here the field which shall be translated.
|
||||
|
||||
@ -136,6 +136,37 @@ for idx, document in enumerate(tqdm(document_store)):
|
||||
print_questions(result)
|
||||
```
|
||||
|
||||
## Translated Question Answer Generation Pipeline
|
||||
Trained models for Question Answer Generation are not available in many languages other than English. Haystack
|
||||
provides a workaround for that issue by machine-translating a pipeline's inputs and outputs with the
|
||||
TranslationWrapperPipeline. The following example generates German questions and answers on a German text
|
||||
document - by using an English model for Question Answer Generation.
|
||||
|
||||
|
||||
```python
|
||||
# Fill the document store with a German document.
|
||||
text1 = "Python ist eine interpretierte Hochsprachenprogrammiersprache für allgemeine Zwecke. Sie wurde von Guido van Rossum entwickelt und 1991 erstmals veröffentlicht. Die Design-Philosophie von Python legt den Schwerpunkt auf die Lesbarkeit des Codes und die Verwendung von viel Leerraum (Whitespace)."
|
||||
docs = [{"content": text1}]
|
||||
document_store.delete_documents()
|
||||
document_store.write_documents(docs)
|
||||
|
||||
# Load machine translation models
|
||||
from haystack.nodes import TransformersTranslator
|
||||
in_translator = TransformersTranslator(model_name_or_path="Helsinki-NLP/opus-mt-de-en")
|
||||
out_translator = TransformersTranslator(model_name_or_path="Helsinki-NLP/opus-mt-en-de")
|
||||
|
||||
# Wrap the previously defined QuestionAnswerGenerationPipeline
|
||||
from haystack.pipelines import TranslationWrapperPipeline
|
||||
pipeline_with_translation = TranslationWrapperPipeline(input_translator=in_translator,
|
||||
output_translator=out_translator,
|
||||
pipeline=qag_pipeline)
|
||||
|
||||
for idx, document in enumerate(tqdm(document_store)):
|
||||
print(f"\n * Generating questions and answers for document {idx}: {document.content[:100]}...\n")
|
||||
result = pipeline_with_translation.run(documents=[document])
|
||||
print_questions(result)
|
||||
```
|
||||
|
||||
## About us
|
||||
|
||||
This [Haystack](https://github.com/deepset-ai/haystack/) notebook was made with love by [deepset](https://deepset.ai/) in Berlin, Germany
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
from typing import Any, Dict, List, Mapping, Optional, Union
|
||||
|
||||
from copy import deepcopy
|
||||
from abc import abstractmethod
|
||||
|
||||
from haystack.nodes.base import BaseComponent
|
||||
@ -15,6 +15,7 @@ class BaseTranslator(BaseComponent):
|
||||
@abstractmethod
|
||||
def translate(
|
||||
self,
|
||||
results: List[Dict[str, Any]] = None,
|
||||
query: Optional[str] = None,
|
||||
documents: Optional[Union[List[Document], List[Answer], List[str], List[Dict[str, Any]]]] = None,
|
||||
dict_key: Optional[str] = None,
|
||||
@ -26,30 +27,38 @@ class BaseTranslator(BaseComponent):
|
||||
|
||||
def run( # type: ignore
|
||||
self,
|
||||
results: List[Dict[str, Any]] = None,
|
||||
query: Optional[str] = None,
|
||||
documents: Optional[Union[List[Document], List[Answer], List[str], List[Dict[str, Any]]]] = None,
|
||||
answers: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None,
|
||||
dict_key: Optional[str] = None,
|
||||
):
|
||||
"""Method that gets executed when this class is used as a Node in a Haystack Pipeline"""
|
||||
|
||||
results = {}
|
||||
translation_results = {}
|
||||
|
||||
if results is not None:
|
||||
translation_results = {"results":deepcopy(results)}
|
||||
translated_queries_answers = self.translate(results=translation_results["results"])
|
||||
for i, result in enumerate(translation_results["results"]):
|
||||
result["query"] = translated_queries_answers[i]
|
||||
result["answers"][0].answer = translated_queries_answers[len(translation_results["results"])+i]
|
||||
return translation_results, "output_1"
|
||||
|
||||
# This will cover input query stage
|
||||
if query:
|
||||
results["query"] = self.translate(query=query)
|
||||
translation_results["query"] = self.translate(query=query) # type: ignore
|
||||
# This will cover retriever and summarizer
|
||||
if documents:
|
||||
_dict_key = dict_key or "text"
|
||||
results["documents"] = self.translate(documents=documents, dict_key=_dict_key)
|
||||
translation_results["documents"] = self.translate(documents=documents, dict_key=_dict_key) # type: ignore
|
||||
|
||||
if answers:
|
||||
_dict_key = dict_key or "answer"
|
||||
if isinstance(answers, Mapping):
|
||||
# This will cover reader
|
||||
results["answers"] = self.translate(documents=answers["answers"], dict_key=_dict_key)
|
||||
translation_results["answers"] = self.translate(documents=answers["answers"], dict_key=_dict_key) # type: ignore
|
||||
else:
|
||||
# This will cover generator
|
||||
results["answers"] = self.translate(documents=answers, dict_key=_dict_key)
|
||||
translation_results["answers"] = self.translate(documents=answers, dict_key=_dict_key) # type: ignore
|
||||
|
||||
return results, "output_1"
|
||||
return translation_results, "output_1"
|
||||
|
||||
@ -78,17 +78,24 @@ class TransformersTranslator(BaseTranslator):
|
||||
|
||||
def translate(
|
||||
self,
|
||||
results: List[Dict[str, Any]] = None,
|
||||
query: Optional[str] = None,
|
||||
documents: Optional[Union[List[Document], List[Answer], List[str], List[Dict[str, Any]]]] = None,
|
||||
dict_key: Optional[str] = None,
|
||||
) -> Union[str, List[Document], List[Answer], List[str], List[Dict[str, Any]]]:
|
||||
"""
|
||||
Run the actual translation. You can supply a query or a list of documents. Whatever is supplied will be translated.
|
||||
:param results: Generated QA pairs to translate
|
||||
:param query: The query string to translate
|
||||
:param documents: The documents to translate
|
||||
:param dict_key: If you pass a dictionary in `documents`, you can specify here the field which shall be translated.
|
||||
"""
|
||||
if not query and not documents:
|
||||
queries_for_translator = None
|
||||
answers_for_translator = None
|
||||
if results is not None:
|
||||
queries_for_translator = [result["query"] for result in results]
|
||||
answers_for_translator = [result["answers"][0].answer for result in results]
|
||||
if not query and not documents and results is None:
|
||||
raise AttributeError("Translator need query or documents to perform translation")
|
||||
|
||||
if query and documents:
|
||||
@ -100,7 +107,10 @@ class TransformersTranslator(BaseTranslator):
|
||||
|
||||
dict_key = dict_key or "content"
|
||||
|
||||
if isinstance(documents, list):
|
||||
if queries_for_translator is not None and answers_for_translator is not None:
|
||||
text_for_translator = queries_for_translator + answers_for_translator
|
||||
|
||||
elif isinstance(documents, list):
|
||||
if isinstance(documents[0], Document):
|
||||
text_for_translator = [doc.content for doc in documents] # type: ignore
|
||||
elif isinstance(documents[0], Answer):
|
||||
@ -126,7 +136,9 @@ class TransformersTranslator(BaseTranslator):
|
||||
clean_up_tokenization_spaces=self.clean_up_tokenization_spaces
|
||||
)
|
||||
|
||||
if query:
|
||||
if queries_for_translator is not None and answers_for_translator is not None:
|
||||
return translated_texts
|
||||
elif query:
|
||||
return translated_texts[0]
|
||||
elif documents:
|
||||
if isinstance(documents, list) and isinstance(documents[0], str):
|
||||
|
||||
@ -262,7 +262,56 @@
|
||||
" result = qag_pipeline.run(documents=[document])\n",
|
||||
" print_questions(result)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n",
|
||||
"is_executing": true
|
||||
}
|
||||
},
|
||||
"execution_count": null,
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"## Translated Question Answer Generation Pipeline\n",
|
||||
"Trained models for Question Answer Generation are not available in many languages other than English. Haystack\n",
|
||||
"provides a workaround for that issue by machine-translating a pipeline's inputs and outputs with the\n",
|
||||
"TranslationWrapperPipeline. The following example generates German questions and answers on a German text\n",
|
||||
"document - by using an English model for Question Answer Generation."
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Fill the document store with a German document.\n",
|
||||
"text1 = \"Python ist eine interpretierte Hochsprachenprogrammiersprache für allgemeine Zwecke. Sie wurde von Guido van Rossum entwickelt und 1991 erstmals veröffentlicht. Die Design-Philosophie von Python legt den Schwerpunkt auf die Lesbarkeit des Codes und die Verwendung von viel Leerraum (Whitespace).\"\n",
|
||||
"docs = [{\"content\": text1}]\n",
|
||||
"document_store.delete_documents()\n",
|
||||
"document_store.write_documents(docs)\n",
|
||||
"\n",
|
||||
"# Load machine translation models\n",
|
||||
"from haystack.nodes import TransformersTranslator\n",
|
||||
"in_translator = TransformersTranslator(model_name_or_path=\"Helsinki-NLP/opus-mt-de-en\")\n",
|
||||
"out_translator = TransformersTranslator(model_name_or_path=\"Helsinki-NLP/opus-mt-en-de\")\n",
|
||||
"\n",
|
||||
"# Wrap the previously defined QuestionAnswerGenerationPipeline\n",
|
||||
"from haystack.pipelines import TranslationWrapperPipeline\n",
|
||||
"pipeline_with_translation = TranslationWrapperPipeline(input_translator=in_translator,\n",
|
||||
" output_translator=out_translator,\n",
|
||||
" pipeline=qag_pipeline)\n",
|
||||
"\n",
|
||||
"for idx, document in enumerate(tqdm(document_store)):\n",
|
||||
" print(f\"\\n * Generating questions and answers for document {idx}: {document.content[:100]}...\\n\")\n",
|
||||
" result = pipeline_with_translation.run(documents=[document])\n",
|
||||
" print_questions(result)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
|
||||
@ -1,8 +1,7 @@
|
||||
from tqdm import tqdm
|
||||
from pprint import pprint
|
||||
from haystack.nodes import QuestionGenerator, ElasticsearchRetriever, FARMReader
|
||||
from haystack.nodes import QuestionGenerator, ElasticsearchRetriever, FARMReader, TransformersTranslator
|
||||
from haystack.document_stores import ElasticsearchDocumentStore
|
||||
from haystack.pipelines import QuestionGenerationPipeline, RetrieverQuestionGenerationPipeline, QuestionAnswerGenerationPipeline
|
||||
from haystack.pipelines import QuestionGenerationPipeline, RetrieverQuestionGenerationPipeline, QuestionAnswerGenerationPipeline, TranslationWrapperPipeline
|
||||
from haystack.utils import launch_es, print_questions
|
||||
|
||||
"""
|
||||
@ -10,74 +9,106 @@ This is a bare bones tutorial showing what is possible with the QuestionGenerato
|
||||
questions which the model thinks can be answered by a given document.
|
||||
"""
|
||||
|
||||
# Start Elasticsearch service via Docker
|
||||
launch_es()
|
||||
|
||||
text1 = "Python is an interpreted, high-level, general-purpose programming language. Created by Guido van Rossum and first released in 1991, Python's design philosophy emphasizes code readability with its notable use of significant whitespace."
|
||||
text2 = "Princess Arya Stark is the third child and second daughter of Lord Eddard Stark and his wife, Lady Catelyn Stark. She is the sister of the incumbent Westerosi monarchs, Sansa, Queen in the North, and Brandon, King of the Andals and the First Men. After narrowly escaping the persecution of House Stark by House Lannister, Arya is trained as a Faceless Man at the House of Black and White in Braavos, using her abilities to avenge her family. Upon her return to Westeros, she exacts retribution for the Red Wedding by exterminating the Frey male line."
|
||||
text3 = "Dry Cleaning are an English post-punk band who formed in South London in 2018.[3] The band is composed of vocalist Florence Shaw, guitarist Tom Dowse, bassist Lewis Maynard and drummer Nick Buxton. They are noted for their use of spoken word primarily in lieu of sung vocals, as well as their unconventional lyrics. Their musical stylings have been compared to Wire, Magazine and Joy Division.[4] The band released their debut single, 'Magic of Meghan' in 2019. Shaw wrote the song after going through a break-up and moving out of her former partner's apartment the same day that Meghan Markle and Prince Harry announced they were engaged.[5] This was followed by the release of two EPs that year: Sweet Princess in August and Boundary Road Snacks and Drinks in October. The band were included as part of the NME 100 of 2020,[6] as well as DIY magazine's Class of 2020.[7] The band signed to 4AD in late 2020 and shared a new single, 'Scratchcard Lanyard'.[8] In February 2021, the band shared details of their debut studio album, New Long Leg. They also shared the single 'Strong Feelings'.[9] The album, which was produced by John Parish, was released on 2 April 2021.[10]"
|
||||
def tutorial13_question_generation():
|
||||
# Start Elasticsearch service via Docker
|
||||
launch_es()
|
||||
|
||||
docs = [{"content": text1},
|
||||
{"content": text2},
|
||||
{"content": text3}]
|
||||
text1 = "Python is an interpreted, high-level, general-purpose programming language. Created by Guido van Rossum and first released in 1991, Python's design philosophy emphasizes code readability with its notable use of significant whitespace."
|
||||
text2 = "Princess Arya Stark is the third child and second daughter of Lord Eddard Stark and his wife, Lady Catelyn Stark. She is the sister of the incumbent Westerosi monarchs, Sansa, Queen in the North, and Brandon, King of the Andals and the First Men. After narrowly escaping the persecution of House Stark by House Lannister, Arya is trained as a Faceless Man at the House of Black and White in Braavos, using her abilities to avenge her family. Upon her return to Westeros, she exacts retribution for the Red Wedding by exterminating the Frey male line."
|
||||
text3 = "Dry Cleaning are an English post-punk band who formed in South London in 2018.[3] The band is composed of vocalist Florence Shaw, guitarist Tom Dowse, bassist Lewis Maynard and drummer Nick Buxton. They are noted for their use of spoken word primarily in lieu of sung vocals, as well as their unconventional lyrics. Their musical stylings have been compared to Wire, Magazine and Joy Division.[4] The band released their debut single, 'Magic of Meghan' in 2019. Shaw wrote the song after going through a break-up and moving out of her former partner's apartment the same day that Meghan Markle and Prince Harry announced they were engaged.[5] This was followed by the release of two EPs that year: Sweet Princess in August and Boundary Road Snacks and Drinks in October. The band were included as part of the NME 100 of 2020,[6] as well as DIY magazine's Class of 2020.[7] The band signed to 4AD in late 2020 and shared a new single, 'Scratchcard Lanyard'.[8] In February 2021, the band shared details of their debut studio album, New Long Leg. They also shared the single 'Strong Feelings'.[9] The album, which was produced by John Parish, was released on 2 April 2021.[10]"
|
||||
|
||||
# Initialize document store and write in the documents
|
||||
document_store = ElasticsearchDocumentStore()
|
||||
document_store.write_documents(docs)
|
||||
docs = [{"content": text1},
|
||||
{"content": text2},
|
||||
{"content": text3}]
|
||||
|
||||
# Initialize Question Generator
|
||||
question_generator = QuestionGenerator()
|
||||
# Initialize document store and write in the documents
|
||||
document_store = ElasticsearchDocumentStore()
|
||||
document_store.write_documents(docs)
|
||||
|
||||
"""
|
||||
The most basic version of a question generator pipeline takes a document as input and outputs generated questions
|
||||
which the the document can answer.
|
||||
"""
|
||||
# Initialize Question Generator
|
||||
question_generator = QuestionGenerator()
|
||||
|
||||
# QuestionGenerationPipeline
|
||||
print("\nQuestionGenerationPipeline")
|
||||
print("==========================")
|
||||
"""
|
||||
The most basic version of a question generator pipeline takes a document as input and outputs generated questions
|
||||
which the the document can answer.
|
||||
"""
|
||||
|
||||
question_generation_pipeline = QuestionGenerationPipeline(question_generator)
|
||||
for idx, document in enumerate(document_store):
|
||||
|
||||
print(f"\n * Generating questions for document {idx}: {document.content[:100]}...\n")
|
||||
result = question_generation_pipeline.run(documents=[document])
|
||||
# QuestionGenerationPipeline
|
||||
print("\nQuestionGenerationPipeline")
|
||||
print("==========================")
|
||||
|
||||
question_generation_pipeline = QuestionGenerationPipeline(question_generator)
|
||||
for idx, document in enumerate(document_store):
|
||||
|
||||
print(f"\n * Generating questions for document {idx}: {document.content[:100]}...\n")
|
||||
result = question_generation_pipeline.run(documents=[document])
|
||||
print_questions(result)
|
||||
|
||||
"""
|
||||
This pipeline takes a query as input. It retrievers relevant documents and then generates questions based on these.
|
||||
"""
|
||||
|
||||
# RetrieverQuestionGenerationPipeline
|
||||
print("\RetrieverQuestionGenerationPipeline")
|
||||
print("==================================")
|
||||
|
||||
retriever = ElasticsearchRetriever(document_store=document_store)
|
||||
rqg_pipeline = RetrieverQuestionGenerationPipeline(retriever, question_generator)
|
||||
|
||||
print(f"\n * Generating questions for documents matching the query 'Arya Stark'\n")
|
||||
result = rqg_pipeline.run(query="Arya Stark")
|
||||
print_questions(result)
|
||||
|
||||
"""
|
||||
This pipeline takes a query as input. It retrievers relevant documents and then generates questions based on these.
|
||||
"""
|
||||
|
||||
# RetrieverQuestionGenerationPipeline
|
||||
print("\RetrieverQuestionGenerationPipeline")
|
||||
print("==================================")
|
||||
"""
|
||||
This pipeline takes a document as input, generates questions on it, and attempts to answer these questions using
|
||||
a Reader model
|
||||
"""
|
||||
|
||||
retriever = ElasticsearchRetriever(document_store=document_store)
|
||||
rqg_pipeline = RetrieverQuestionGenerationPipeline(retriever, question_generator)
|
||||
# QuestionAnswerGenerationPipeline
|
||||
print("\QuestionAnswerGenerationPipeline")
|
||||
print("===============================")
|
||||
|
||||
print(f"\n * Generating questions for documents matching the query 'Arya Stark'\n")
|
||||
result = rqg_pipeline.run(query="Arya Stark")
|
||||
print_questions(result)
|
||||
reader = FARMReader("deepset/roberta-base-squad2")
|
||||
qag_pipeline = QuestionAnswerGenerationPipeline(question_generator, reader)
|
||||
for idx, document in enumerate(tqdm(document_store)):
|
||||
|
||||
print(f"\n * Generating questions and answers for document {idx}: {document.content[:100]}...\n")
|
||||
result = qag_pipeline.run(documents=[document])
|
||||
print_questions(result)
|
||||
|
||||
|
||||
"""
|
||||
This pipeline takes a document as input, generates questions on it, and attempts to answer these questions using
|
||||
a Reader model
|
||||
"""
|
||||
"""
|
||||
Trained models for Question Answer Generation are not available in many languages other than English.
|
||||
Haystack provides a workaround for that issue by machine-translating a pipeline's inputs and outputs with the TranslationWrapperPipeline.
|
||||
The following example generates German questions and answers on a German text document - by using an English model for Question Answer Generation.
|
||||
"""
|
||||
|
||||
# QuestionAnswerGenerationPipeline
|
||||
print("\QuestionAnswerGenerationPipeline")
|
||||
print("===============================")
|
||||
# Fill the document store with a German document.
|
||||
text1 = "Python ist eine interpretierte Hochsprachenprogrammiersprache für allgemeine Zwecke. Sie wurde von Guido van Rossum entwickelt und 1991 erstmals veröffentlicht. Die Design-Philosophie von Python legt den Schwerpunkt auf die Lesbarkeit des Codes und die Verwendung von viel Leerraum (Whitespace)."
|
||||
docs = [{"content": text1}]
|
||||
document_store.delete_documents()
|
||||
document_store.write_documents(docs)
|
||||
|
||||
reader = FARMReader("deepset/roberta-base-squad2")
|
||||
qag_pipeline = QuestionAnswerGenerationPipeline(question_generator, reader)
|
||||
for idx, document in enumerate(tqdm(document_store)):
|
||||
# Load machine translation models
|
||||
in_translator = TransformersTranslator(model_name_or_path="Helsinki-NLP/opus-mt-de-en")
|
||||
out_translator = TransformersTranslator(model_name_or_path="Helsinki-NLP/opus-mt-en-de")
|
||||
|
||||
print(f"\n * Generating questions and answers for document {idx}: {document.content[:100]}...\n")
|
||||
result = qag_pipeline.run(documents=[document])
|
||||
print_questions(result)
|
||||
# Wrap the previously defined QuestionAnswerGenerationPipeline
|
||||
pipeline_with_translation = TranslationWrapperPipeline(input_translator=in_translator,
|
||||
output_translator=out_translator,
|
||||
pipeline=qag_pipeline)
|
||||
|
||||
for idx, document in enumerate(tqdm(document_store)):
|
||||
print(f"\n * Generating questions and answers for document {idx}: {document.content[:100]}...\n")
|
||||
result = pipeline_with_translation.run(documents=[document])
|
||||
print_questions(result)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
tutorial13_question_generation()
|
||||
|
||||
# This Haystack script was made with love by deepset in Berlin, Germany
|
||||
# Haystack: https://github.com/deepset-ai/haystack
|
||||
# deepset: https://deepset.ai/
|
||||
# deepset: https://deepset.ai/
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user