Add InMemoryKnowledgeGraph (#2678)

* draft for InMemoryKnowledgeGraph

* remove comments

* Update Documentation & Code Style

* fix import and signature

* Fix dependencies for in_memory_knowlede_graph

* updated tutorials

* Update Documentation & Code Style

* fix bug in notebook

* fix other notebook bug

* Update Documentation & Code Style

* improved tutorial notebook

* Update Documentation & Code Style

* better implementation of InMemoryKnowledgeGraph

* fix

* Update Documentation & Code Style

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
This commit is contained in:
Stefano Fiorucci 2022-06-22 19:16:33 +02:00 committed by GitHub
parent b87c0c950b
commit b01a7c2259
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 533 additions and 157 deletions

View File

@ -22,7 +22,7 @@ The training of models that translate text queries into SPARQL queries is curren
# Install the latest master of Haystack
!pip install --upgrade pip
!pip install git+https://github.com/deepset-ai/haystack.git#egg=farm-haystack[colab,graphdb]
!pip install git+https://github.com/deepset-ai/haystack.git#egg=farm-haystack[colab,inmemorygraph]
```
@ -34,7 +34,7 @@ import time
from pathlib import Path
from haystack.nodes import Text2SparqlRetriever
from haystack.document_stores import GraphDBKnowledgeGraph
from haystack.document_stores import InMemoryKnowledgeGraph
from haystack.utils import fetch_archive_from_http
```
@ -54,44 +54,24 @@ s3_url = "https://fandom-qa.s3-eu-west-1.amazonaws.com/saved_models/hp_v3.4.zip"
fetch_archive_from_http(url=s3_url, output_dir=model_dir)
```
## Launching a GraphDB instance
## Initialize a knowledge graph and load data
Currently, Haystack supports two alternative implementations for knowledge graphs:
* simple InMemoryKnowledgeGraph (based on RDFLib in-memory store)
* GraphDBKnowledgeGraph, which runs on GraphDB.
### InMemoryKnowledgeGraph
```python
# Unfortunately, there seems to be no good way to run GraphDB in colab environments
# In your local environment, you could start a GraphDB server with docker
# Feel free to check GraphDB's website for the free version https://www.ontotext.com/products/graphdb/graphdb-free/
import os
LAUNCH_GRAPHDB = os.environ.get("LAUNCH_GRAPHDB", False)
if LAUNCH_GRAPHDB:
print("Starting GraphDB ...")
status = subprocess.run(
[
"docker run -d -p 7200:7200 --name graphdb-instance-tutorial docker-registry.ontotext.com/graphdb-free:9.4.1-adoptopenjdk11"
],
shell=True,
)
if status.returncode:
raise Exception(
"Failed to launch GraphDB. Maybe it is already running or you already have a container with that name that you could start?"
)
time.sleep(5)
```
## Creating a new GraphDB repository (also known as index in haystack's document stores)
```python
# Initialize a knowledge graph connected to GraphDB and use "tutorial_10_index" as the name of the index
kg = GraphDBKnowledgeGraph(index="tutorial_10_index")
# Initialize a in memory knowledge graph and use "tutorial_10_index" as the name of the index
kg = InMemoryKnowledgeGraph(index="tutorial_10_index")
# Delete the index as it might have been already created in previous runs
kg.delete_index()
# Create the index based on a configuration file
kg.create_index(config_path=Path(graph_dir) / "repo-config.ttl")
# Create the index
kg.create_index()
# Import triples of subject, predicate, and object statements from a ttl file
kg.import_from_ttl_file(index="tutorial_10_index", path=Path(graph_dir) / "triples.ttl")
@ -99,15 +79,69 @@ print(f"The last triple stored in the knowledge graph is: {kg.get_all_triples()[
print(f"There are {len(kg.get_all_triples())} triples stored in the knowledge graph.")
```
### GraphDBKnowledgeGraph (alternative)
#### Launching a GraphDB instance
```python
# Define prefixes for names of resources so that we can use shorter resource names in queries
prefixes = """PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX hp: <https://deepset.ai/harry_potter/>
"""
kg.prefixes = prefixes
# # Unfortunately, there seems to be no good way to run GraphDB in colab environments
# # In your local environment, you could start a GraphDB server with docker
# # Feel free to check GraphDB's website for the free version https://www.ontotext.com/products/graphdb/graphdb-free/
# import os
# LAUNCH_GRAPHDB = os.environ.get("LAUNCH_GRAPHDB", False)
# if LAUNCH_GRAPHDB:
# print("Starting GraphDB ...")
# status = subprocess.run(
# [
# "docker run -d -p 7200:7200 --name graphdb-instance-tutorial docker-registry.ontotext.com/graphdb-free:9.4.1-adoptopenjdk11"
# ],
# shell=True,
# )
# if status.returncode:
# raise Exception(
# "Failed to launch GraphDB. Maybe it is already running or you already have a container with that name that you could start?"
# )
# time.sleep(5)
```
#### Creating a new GraphDB repository (also known as index in haystack's document stores)
```python
# from haystack.document_stores import GraphDBKnowledgeGraph
# # Initialize a knowledge graph connected to GraphDB and use "tutorial_10_index" as the name of the index
# kg = GraphDBKnowledgeGraph(index="tutorial_10_index")
# # Delete the index as it might have been already created in previous runs
# kg.delete_index()
# # Create the index based on a configuration file
# kg.create_index(config_path=Path(graph_dir) / "repo-config.ttl")
# # Import triples of subject, predicate, and object statements from a ttl file
# kg.import_from_ttl_file(index="tutorial_10_index", path=Path(graph_dir) / "triples.ttl")
# print(f"The last triple stored in the knowledge graph is: {kg.get_all_triples()[-1]}")
# print(f"There are {len(kg.get_all_triples())} triples stored in the knowledge graph.")
```
```python
# # Define prefixes for names of resources so that we can use shorter resource names in queries
# prefixes = """PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
# PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
# PREFIX hp: <https://deepset.ai/harry_potter/>
# """
# kg.prefixes = prefixes
```
## Load the pre-trained retriever
```python
# Load a pre-trained model that translates text queries to SPARQL queries
kgqa_retriever = Text2SparqlRetriever(knowledge_graph=kg, model_name_or_path=Path(model_dir) / "hp_v3.4")
```

View File

@ -23,3 +23,6 @@ else:
MilvusDocumentStore = safe_import("haystack.document_stores.milvus2", "Milvus2DocumentStore", "milvus")
WeaviateDocumentStore = safe_import("haystack.document_stores.weaviate", "WeaviateDocumentStore", "weaviate")
GraphDBKnowledgeGraph = safe_import("haystack.document_stores.graphdb", "GraphDBKnowledgeGraph", "graphdb")
InMemoryKnowledgeGraph = safe_import(
"haystack.document_stores.memory_knowledgegraph", "InMemoryKnowledgeGraph", "inmemorygraph"
)

View File

@ -0,0 +1,137 @@
from typing import Dict, Optional
import logging
from collections import defaultdict
from pathlib import Path
from rdflib import Graph
from haystack.document_stores import BaseKnowledgeGraph
logger = logging.getLogger(__name__)
class InMemoryKnowledgeGraph(BaseKnowledgeGraph):
"""
In memory Knowledge graph store, based on rdflib.
"""
def __init__(self, index: str = "document"):
"""
Init the in memory knowledge graph
:param index: name of the index
"""
super().__init__()
self.indexes: Dict[str, Graph] = defaultdict(dict)
self.index: str = index
def create_index(self, index: Optional[str] = None):
"""
Create a new index stored in memory
:param index: name of the index
"""
index = index or self.index
if index not in self.indexes:
self.indexes[index] = Graph()
else:
logger.warning(f"Index '{index}' is already present.")
def delete_index(self, index: Optional[str] = None):
"""
Delete an existing index. The index including all data will be removed.
:param index: The name of the index to delete.
"""
index = index or self.index
if index in self.indexes:
del self.indexes[index]
logger.info(f"Index '{index}' deleted.")
def import_from_ttl_file(self, path: Path, index: Optional[str] = None):
"""
Load in memory an existing knowledge graph represented in the form of triples of subject, predicate, and object from a .ttl file
:param path: path to a .ttl containing a knowledge graph
:param index: name of the index
"""
index = index or self.index
self.indexes[index].parse(path)
def get_all_triples(self, index: Optional[str] = None):
"""
Query the given in memory index for all its stored triples. Duplicates are not filtered.
:param index: name of the index
:return: all triples stored in the index
"""
sparql_query = "SELECT * WHERE { ?s ?p ?o. }"
results = self.query(sparql_query=sparql_query, index=index)
return results
def get_all_subjects(self, index: Optional[str] = None):
"""
Query the given in memory index for all its stored subjects. Duplicates are not filtered.
:param index: name of the index
:return: all subjects stored in the index
"""
sparql_query = "SELECT ?s WHERE { ?s ?p ?o. }"
results = self.query(sparql_query=sparql_query, index=index)
return results
def get_all_predicates(self, index: Optional[str] = None):
"""
Query the given in memory index for all its stored predicates. Duplicates are not filtered.
:param index: name of the index
:return: all predicates stored in the index
"""
sparql_query = "SELECT ?p WHERE { ?s ?p ?o. }"
results = self.query(sparql_query=sparql_query, index=index)
return results
def _create_document_field_map(self) -> Dict:
"""
There is no field mapping required
"""
return {}
def get_all_objects(self, index: Optional[str] = None):
"""
Query the given in memory index for all its stored objects. Duplicates are not filtered.
:param index: name of the index
:return: all objects stored in the index
"""
sparql_query = "SELECT ?o WHERE { ?s ?p ?o. }"
results = self.query(sparql_query=sparql_query, index=index)
return results
def query(self, sparql_query: str, index: Optional[str] = None, headers: Optional[Dict[str, str]] = None):
"""
Execute a SPARQL query on the given in memory index
:param sparql_query: SPARQL query that shall be executed
:param index: name of the index
:return: query result
"""
index = index or self.index
raw_results = self.indexes[index].query(sparql_query)
if raw_results.askAnswer is not None:
return raw_results.askAnswer
else:
formatted_results = []
for b in raw_results.bindings:
formatted_result = {}
items = list(b.items())
for item in items:
type_ = item[0].toPython()[1:]
uri = item[1].toPython()
formatted_result[type_] = {"type": "uri", "value": uri}
formatted_results.append(formatted_result)
return formatted_results

View File

@ -40,6 +40,9 @@
{
"$ref": "#/definitions/InMemoryDocumentStoreComponent"
},
{
"$ref": "#/definitions/InMemoryKnowledgeGraphComponent"
},
{
"$ref": "#/definitions/Milvus2DocumentStoreComponent"
},
@ -845,6 +848,40 @@
],
"additionalProperties": false
},
"InMemoryKnowledgeGraphComponent": {
"type": "object",
"properties": {
"name": {
"title": "Name",
"description": "Custom name for the component. Helpful for visualization and debugging.",
"type": "string"
},
"type": {
"title": "Type",
"description": "Haystack Class name for the component.",
"type": "string",
"const": "InMemoryKnowledgeGraph"
},
"params": {
"title": "Parameters",
"type": "object",
"properties": {
"index": {
"title": "Index",
"default": "document",
"type": "string"
}
},
"additionalProperties": false,
"description": "Each parameter can reference other components defined in the same YAML file."
}
},
"required": [
"type",
"name"
],
"additionalProperties": false
},
"Milvus2DocumentStoreComponent": {
"type": "object",
"properties": {

View File

@ -146,10 +146,12 @@ pinecone =
farm-haystack[sql,only-pinecone]
graphdb =
SPARQLWrapper
inmemorygraph =
SPARQLWrapper
docstores =
farm-haystack[faiss,milvus,weaviate,graphdb,pinecone]
farm-haystack[faiss,milvus,weaviate,graphdb,inmemorygraph,pinecone]
docstores-gpu =
farm-haystack[faiss-gpu,milvus,weaviate,graphdb,pinecone]
farm-haystack[faiss-gpu,milvus,weaviate,graphdb,inmemorygraph,pinecone]
audio =
espnet

View File

@ -3,7 +3,7 @@ from pathlib import Path
import pytest
from haystack.nodes import Text2SparqlRetriever
from haystack.document_stores import GraphDBKnowledgeGraph
from haystack.document_stores import GraphDBKnowledgeGraph, InMemoryKnowledgeGraph
from haystack.utils import fetch_archive_from_http
@ -60,3 +60,50 @@ def test_graph_retrieval():
sparql_query="select distinct ?obj where { <https://deepset.ai/harry_potter/Hermione_granger> <https://deepset.ai/harry_potter/patronus> ?obj . }"
)
assert result[0][0] == "https://deepset.ai/harry_potter/Otter"
@pytest.mark.integration
def test_inmemory_graph_retrieval():
# TODO rename doc_dir
graph_dir = "../data/tutorial10_knowledge_graph/"
s3_url = "https://fandom-qa.s3-eu-west-1.amazonaws.com/triples_and_config.zip"
fetch_archive_from_http(url=s3_url, output_dir=graph_dir)
# Fetch a pre-trained BART model that translates natural language questions to SPARQL queries
model_dir = "../saved_models/tutorial10_knowledge_graph/"
s3_url = "https://fandom-qa.s3-eu-west-1.amazonaws.com/saved_models/hp_v3.4.zip"
fetch_archive_from_http(url=s3_url, output_dir=model_dir)
kg = InMemoryKnowledgeGraph(index="tutorial_10_index")
kg.delete_index()
kg.create_index()
kg.import_from_ttl_file(index="tutorial_10_index", path=Path(graph_dir + "triples.ttl"))
triple = {
"p": {"type": "uri", "value": "https://deepset.ai/harry_potter/_paternalgrandfather"},
"s": {"type": "uri", "value": "https://deepset.ai/harry_potter/Melody_fawley"},
"o": {"type": "uri", "value": "https://deepset.ai/harry_potter/Marshall_fawley"},
}
triples = kg.get_all_triples()
assert len(triples) > 0
assert triple in triples
kgqa_retriever = Text2SparqlRetriever(knowledge_graph=kg, model_name_or_path=model_dir + "hp_v3.4")
result = kgqa_retriever.retrieve(query="In which house is Harry Potter?")
assert result[0] == {
"answer": ["https://deepset.ai/harry_potter/Gryffindor"],
"prediction_meta": {
"model": "Text2SparqlRetriever",
"sparql_query": "select ?a { hp:Harry_potter hp:house ?a . }",
},
}
result = kgqa_retriever._query_kg(
sparql_query="select distinct ?sbj where { ?sbj hp:job hp:Keeper_of_keys_and_grounds . }"
)
assert result[0][0] == "https://deepset.ai/harry_potter/Rubeus_hagrid"
result = kgqa_retriever._query_kg(
sparql_query="select distinct ?obj where { <https://deepset.ai/harry_potter/Hermione_granger> <https://deepset.ai/harry_potter/patronus> ?obj . }"
)
assert result[0][0] == "https://deepset.ai/harry_potter/Otter"

View File

@ -3,7 +3,6 @@
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
@ -23,6 +22,9 @@
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
},
"pycharm": {
"name": "#%%\n"
}
@ -34,7 +36,7 @@
"\n",
"# Install the latest master of Haystack\n",
"!pip install --upgrade pip\n",
"!pip install git+https://github.com/deepset-ai/haystack.git#egg=farm-haystack[colab,graphdb]"
"!pip install git+https://github.com/deepset-ai/haystack.git#egg=farm-haystack[colab,inmemorygraph]"
]
},
{
@ -42,6 +44,9 @@
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
},
"pycharm": {
"name": "#%%\n"
}
@ -55,14 +60,13 @@
"from pathlib import Path\n",
"\n",
"from haystack.nodes import Text2SparqlRetriever\n",
"from haystack.document_stores import GraphDBKnowledgeGraph\n",
"from haystack.document_stores import InMemoryKnowledgeGraph\n",
"from haystack.utils import fetch_archive_from_http"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
@ -76,6 +80,9 @@
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
},
"pycharm": {
"name": "#%%\n"
}
@ -96,80 +103,50 @@
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
},
"metadata": {},
"source": [
"## Launching a GraphDB instance"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"# Unfortunately, there seems to be no good way to run GraphDB in colab environments\n",
"# In your local environment, you could start a GraphDB server with docker\n",
"# Feel free to check GraphDB's website for the free version https://www.ontotext.com/products/graphdb/graphdb-free/\n",
"import os\n",
"\n",
"LAUNCH_GRAPHDB = os.environ.get(\"LAUNCH_GRAPHDB\", False)\n",
"\n",
"if LAUNCH_GRAPHDB:\n",
" print(\"Starting GraphDB ...\")\n",
" status = subprocess.run(\n",
" [\n",
" \"docker run -d -p 7200:7200 --name graphdb-instance-tutorial docker-registry.ontotext.com/graphdb-free:9.4.1-adoptopenjdk11\"\n",
" ],\n",
" shell=True,\n",
" )\n",
" if status.returncode:\n",
" raise Exception(\n",
" \"Failed to launch GraphDB. Maybe it is already running or you already have a container with that name that you could start?\"\n",
" )\n",
" time.sleep(5)"
"## Initialize a knowledge graph and load data"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
},
"metadata": {},
"source": [
"## Creating a new GraphDB repository (also known as index in haystack's document stores)"
"Currently, Haystack supports two alternative implementations for knowledge graphs:\n",
"* simple InMemoryKnowledgeGraph (based on RDFLib in-memory store)\n",
"* GraphDBKnowledgeGraph, which runs on GraphDB."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### InMemoryKnowledgeGraph "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The last triple stored in the knowledge graph is: {'s': {'type': 'uri', 'value': 'https://deepset.ai/harry_potter/Harry_potter'}, 'p': {'type': 'uri', 'value': 'https://deepset.ai/harry_potter/family'}, 'o': {'type': 'uri', 'value': 'https://deepset.ai/harry_potter/Dudley_dursleys_children'}}\n",
"There are 118543 triples stored in the knowledge graph.\n"
]
}
},
"outputs": [],
],
"source": [
"# Initialize a knowledge graph connected to GraphDB and use \"tutorial_10_index\" as the name of the index\n",
"kg = GraphDBKnowledgeGraph(index=\"tutorial_10_index\")\n",
"# Initialize a in memory knowledge graph and use \"tutorial_10_index\" as the name of the index\n",
"kg = InMemoryKnowledgeGraph(index=\"tutorial_10_index\")\n",
"\n",
"# Delete the index as it might have been already created in previous runs\n",
"kg.delete_index()\n",
"\n",
"# Create the index based on a configuration file\n",
"kg.create_index(config_path=Path(graph_dir) / \"repo-config.ttl\")\n",
"# Create the index\n",
"kg.create_index()\n",
"\n",
"# Import triples of subject, predicate, and object statements from a ttl file\n",
"kg.import_from_ttl_file(index=\"tutorial_10_index\", path=Path(graph_dir) / \"triples.ttl\")\n",
@ -177,24 +154,140 @@
"print(f\"There are {len(kg.get_all_triples())} triples stored in the knowledge graph.\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"jp-MarkdownHeadingCollapsed": true,
"tags": []
},
"source": [
"### GraphDBKnowledgeGraph (alternative)"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"#### Launching a GraphDB instance"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"# Define prefixes for names of resources so that we can use shorter resource names in queries\n",
"prefixes = \"\"\"PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>\n",
"PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>\n",
"PREFIX hp: <https://deepset.ai/harry_potter/>\n",
"\"\"\"\n",
"kg.prefixes = prefixes\n",
"# # Unfortunately, there seems to be no good way to run GraphDB in colab environments\n",
"# # In your local environment, you could start a GraphDB server with docker\n",
"# # Feel free to check GraphDB's website for the free version https://www.ontotext.com/products/graphdb/graphdb-free/\n",
"# import os\n",
"\n",
"# LAUNCH_GRAPHDB = os.environ.get(\"LAUNCH_GRAPHDB\", False)\n",
"\n",
"# if LAUNCH_GRAPHDB:\n",
"# print(\"Starting GraphDB ...\")\n",
"# status = subprocess.run(\n",
"# [\n",
"# \"docker run -d -p 7200:7200 --name graphdb-instance-tutorial docker-registry.ontotext.com/graphdb-free:9.4.1-adoptopenjdk11\"\n",
"# ],\n",
"# shell=True,\n",
"# )\n",
"# if status.returncode:\n",
"# raise Exception(\n",
"# \"Failed to launch GraphDB. Maybe it is already running or you already have a container with that name that you could start?\"\n",
"# )\n",
"# time.sleep(5)"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"#### Creating a new GraphDB repository (also known as index in haystack's document stores)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"# from haystack.document_stores import GraphDBKnowledgeGraph\n",
"\n",
"# # Initialize a knowledge graph connected to GraphDB and use \"tutorial_10_index\" as the name of the index\n",
"# kg = GraphDBKnowledgeGraph(index=\"tutorial_10_index\")\n",
"\n",
"# # Delete the index as it might have been already created in previous runs\n",
"# kg.delete_index()\n",
"\n",
"# # Create the index based on a configuration file\n",
"# kg.create_index(config_path=Path(graph_dir) / \"repo-config.ttl\")\n",
"\n",
"# # Import triples of subject, predicate, and object statements from a ttl file\n",
"# kg.import_from_ttl_file(index=\"tutorial_10_index\", path=Path(graph_dir) / \"triples.ttl\")\n",
"# print(f\"The last triple stored in the knowledge graph is: {kg.get_all_triples()[-1]}\")\n",
"# print(f\"There are {len(kg.get_all_triples())} triples stored in the knowledge graph.\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"# # Define prefixes for names of resources so that we can use shorter resource names in queries\n",
"# prefixes = \"\"\"PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>\n",
"# PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>\n",
"# PREFIX hp: <https://deepset.ai/harry_potter/>\n",
"# \"\"\"\n",
"# kg.prefixes = prefixes"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load the pre-trained retriever"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"# Load a pre-trained model that translates text queries to SPARQL queries\n",
"kgqa_retriever = Text2SparqlRetriever(knowledge_graph=kg, model_name_or_path=Path(model_dir) / \"hp_v3.4\")"
]
@ -202,7 +295,6 @@
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
@ -218,14 +310,30 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 5,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Translating the text query \"In which house is Harry Potter?\" to a SPARQL query and executing it on the knowledge graph...\n",
"[{'answer': ['https://deepset.ai/harry_potter/Gryffindor'], 'prediction_meta': {'model': 'Text2SparqlRetriever', 'sparql_query': 'select ?a { hp:Harry_potter hp:house ?a . }'}}]\n",
"Executing a SPARQL query with prefixed names of resources...\n",
"(['https://deepset.ai/harry_potter/Rubeus_hagrid', 'https://deepset.ai/harry_potter/Ogg'], 'select distinct ?sbj where { ?sbj hp:job hp:Keeper_of_keys_and_grounds . }')\n",
"Executing a SPARQL query with full names of resources...\n",
"(['https://deepset.ai/harry_potter/Otter'], 'select distinct ?obj where { <https://deepset.ai/harry_potter/Hermione_granger> <https://deepset.ai/harry_potter/patronus> ?obj . }')\n"
]
}
],
"source": [
"query = \"In which house is Harry Potter?\"\n",
"print(f'Translating the text query \"{query}\" to a SPARQL query and executing it on the knowledge graph...')\n",
@ -253,9 +361,7 @@
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"metadata": {},
"source": [
"## About us\n",
"\n",
@ -278,23 +384,28 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
"pygments_lexer": "ipython3",
"version": "3.10.4"
},
"vscode": {
"interpreter": {
"hash": "d6fc774dec8e6d4d8b6a5562b41269a570ea5456d1c03f28da35966a9134f033"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
"nbformat_minor": 4
}

View File

@ -5,10 +5,9 @@ import time
from pathlib import Path
from haystack.nodes import Text2SparqlRetriever
from haystack.document_stores import GraphDBKnowledgeGraph
from haystack.document_stores import GraphDBKnowledgeGraph, InMemoryKnowledgeGraph
from haystack.utils import fetch_archive_from_http
logger = logging.getLogger(__name__)
@ -24,46 +23,52 @@ def tutorial10_knowledge_graph():
s3_url = "https://fandom-qa.s3-eu-west-1.amazonaws.com/saved_models/hp_v3.4.zip"
fetch_archive_from_http(url=s3_url, output_dir=model_dir)
LAUNCH_GRAPHDB = os.environ.get("LAUNCH_GRAPHDB", True)
# Start a GraphDB server
if LAUNCH_GRAPHDB:
print("Starting GraphDB ...")
status = subprocess.run(
[
"docker run -d -p 7200:7200 --name graphdb-instance-tutorial docker-registry.ontotext.com/graphdb-free:9.4.1-adoptopenjdk11"
],
shell=True,
)
if status.returncode:
status = subprocess.run(["docker start graphdb-instance-tutorial"], shell=True)
if status.returncode:
raise Exception(
"Failed to launch GraphDB. If you want to connect to an already running GraphDB instance"
"then set LAUNCH_GRAPHDB in the script to False."
)
time.sleep(5)
# Initialize a knowledge graph connected to GraphDB and use "tutorial_10_index" as the name of the index
kg = GraphDBKnowledgeGraph(index="tutorial_10_index")
# Initialize a in memory knowledge graph and use "tutorial_10_index" as the name of the index
kg = InMemoryKnowledgeGraph(index="tutorial_10_index")
# Delete the index as it might have been already created in previous runs
kg.delete_index()
# Create the index based on a configuration file
kg.create_index(config_path=Path(graph_dir + "repo-config.ttl"))
# Create the index
kg.create_index()
# Import triples of subject, predicate, and object statements from a ttl file
kg.import_from_ttl_file(index="tutorial_10_index", path=Path(graph_dir + "triples.ttl"))
kg.import_from_ttl_file(index="tutorial_10_index", path=Path(graph_dir) / "triples.ttl")
print(f"The last triple stored in the knowledge graph is: {kg.get_all_triples()[-1]}")
print(f"There are {len(kg.get_all_triples())} triples stored in the knowledge graph.")
# Define prefixes for names of resources so that we can use shorter resource names in queries
prefixes = """PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX hp: <https://deepset.ai/harry_potter/>
"""
kg.prefixes = prefixes
# ALTERNATIVE PATH USING GraphDB as knowledge graph
# LAUNCH_GRAPHDB = os.environ.get("LAUNCH_GRAPHDB", True)
# # Start a GraphDB server
# if LAUNCH_GRAPHDB:
# print("Starting GraphDB ...")
# status = subprocess.run(
# [
# "docker run -d -p 7200:7200 --name graphdb-instance-tutorial docker-registry.ontotext.com/graphdb-free:9.4.1-adoptopenjdk11"
# ],
# shell=True,
# )
# if status.returncode:
# status = subprocess.run(["docker start graphdb-instance-tutorial"], shell=True)
# if status.returncode:
# raise Exception(
# "Failed to launch GraphDB. If you want to connect to an already running GraphDB instance"
# "then set LAUNCH_GRAPHDB in the script to False."
# )
# time.sleep(5)
# # Initialize a knowledge graph connected to GraphDB and use "tutorial_10_index" as the name of the index
# kg = GraphDBKnowledgeGraph(index="tutorial_10_index")
# # Delete the index as it might have been already created in previous runs
# kg.delete_index()
# # Create the index based on a configuration file
# kg.create_index(config_path=Path(graph_dir + "repo-config.ttl"))
# # Import triples of subject, predicate, and object statements from a ttl file
# kg.import_from_ttl_file(index="tutorial_10_index", path=Path(graph_dir + "triples.ttl"))
# print(f"The last triple stored in the knowledge graph is: {kg.get_all_triples()[-1]}")
# print(f"There are {len(kg.get_all_triples())} triples stored in the knowledge graph.")
# # Define prefixes for names of resources so that we can use shorter resource names in queries
# prefixes = """PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
# PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
# PREFIX hp: <https://deepset.ai/harry_potter/>
# """
# kg.prefixes = prefixes
# Load a pre-trained model that translates text queries to SPARQL queries
kgqa_retriever = Text2SparqlRetriever(knowledge_graph=kg, model_name_or_path=model_dir + "hp_v3.4")