feat: SentenceTransformersTextEmbedder supports config_kwargs (#8432)

* add config_kwargs

* disable PLR0913 for a specific function

* add a release note

* refer to AutoConfig in config_kwargs docstring

---------

Co-authored-by: David S. Batista <dsbatista@gmail.com>
Co-authored-by: Julian Risch <julianrisch@gmx.de>
This commit is contained in:
Alper 2024-10-14 18:08:53 +02:00 committed by GitHub
parent b81abc0c85
commit b40f0c8b5d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 17 additions and 1 deletions

View File

@ -34,7 +34,7 @@ class SentenceTransformersTextEmbedder:
```
"""
def __init__(
def __init__( # noqa: PLR0913
self,
model: str = "sentence-transformers/all-mpnet-base-v2",
device: Optional[ComponentDevice] = None,
@ -48,6 +48,7 @@ class SentenceTransformersTextEmbedder:
truncate_dim: Optional[int] = None,
model_kwargs: Optional[Dict[str, Any]] = None,
tokenizer_kwargs: Optional[Dict[str, Any]] = None,
config_kwargs: Optional[Dict[str, Any]] = None,
precision: Literal["float32", "int8", "uint8", "binary", "ubinary"] = "float32",
):
"""
@ -86,6 +87,8 @@ class SentenceTransformersTextEmbedder:
:param tokenizer_kwargs:
Additional keyword arguments for `AutoTokenizer.from_pretrained` when loading the tokenizer.
Refer to specific model documentation for available kwargs.
:param config_kwargs:
Additional keyword arguments for `AutoConfig.from_pretrained` when loading the model configuration.
:param precision:
The precision to use for the embeddings.
All non-float32 precisions are quantized embeddings.
@ -105,6 +108,7 @@ class SentenceTransformersTextEmbedder:
self.truncate_dim = truncate_dim
self.model_kwargs = model_kwargs
self.tokenizer_kwargs = tokenizer_kwargs
self.config_kwargs = config_kwargs
self.embedding_backend = None
self.precision = precision
@ -135,6 +139,7 @@ class SentenceTransformersTextEmbedder:
truncate_dim=self.truncate_dim,
model_kwargs=self.model_kwargs,
tokenizer_kwargs=self.tokenizer_kwargs,
config_kwargs=self.config_kwargs,
precision=self.precision,
)
if serialization_dict["init_parameters"].get("model_kwargs") is not None:
@ -172,6 +177,7 @@ class SentenceTransformersTextEmbedder:
truncate_dim=self.truncate_dim,
model_kwargs=self.model_kwargs,
tokenizer_kwargs=self.tokenizer_kwargs,
config_kwargs=self.config_kwargs,
)
if self.tokenizer_kwargs and self.tokenizer_kwargs.get("model_max_length"):
self.embedding_backend.model.max_seq_length = self.tokenizer_kwargs["model_max_length"]

View File

@ -0,0 +1,4 @@
---
enhancements:
- |
SentenceTransformersTextEmbedder now supports config_kwargs for additional parameters when loading the model configuration

View File

@ -70,6 +70,7 @@ class TestSentenceTransformersTextEmbedder:
"truncate_dim": None,
"model_kwargs": None,
"tokenizer_kwargs": None,
"config_kwargs": None,
"precision": "float32",
},
}
@ -88,6 +89,7 @@ class TestSentenceTransformersTextEmbedder:
truncate_dim=256,
model_kwargs={"torch_dtype": torch.float32},
tokenizer_kwargs={"model_max_length": 512},
config_kwargs={"use_memory_efficient_attention": False},
precision="int8",
)
data = component.to_dict()
@ -106,6 +108,7 @@ class TestSentenceTransformersTextEmbedder:
"truncate_dim": 256,
"model_kwargs": {"torch_dtype": "torch.float32"},
"tokenizer_kwargs": {"model_max_length": 512},
"config_kwargs": {"use_memory_efficient_attention": False},
"precision": "int8",
},
}
@ -131,6 +134,7 @@ class TestSentenceTransformersTextEmbedder:
"truncate_dim": None,
"model_kwargs": {"torch_dtype": "torch.float32"},
"tokenizer_kwargs": {"model_max_length": 512},
"config_kwargs": {"use_memory_efficient_attention": False},
"precision": "float32",
},
}
@ -147,6 +151,7 @@ class TestSentenceTransformersTextEmbedder:
assert component.truncate_dim is None
assert component.model_kwargs == {"torch_dtype": torch.float32}
assert component.tokenizer_kwargs == {"model_max_length": 512}
assert component.config_kwargs == {"use_memory_efficient_attention": False}
assert component.precision == "float32"
def test_from_dict_no_default_parameters(self):
@ -218,6 +223,7 @@ class TestSentenceTransformersTextEmbedder:
truncate_dim=None,
model_kwargs=None,
tokenizer_kwargs={"model_max_length": 512},
config_kwargs=None,
)
@patch(