feat: Add AzureOpenAIGenerator and AzureOpenAIChatGenerator (#6648)

* Add AzureOpenAIGenerator and AzureOpenAIChatGenerator
This commit is contained in:
Vladimir Blagojevic 2024-01-05 15:48:28 +01:00 committed by GitHub
parent 9c08f3d9c7
commit b7159ad7c2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 521 additions and 2 deletions

View File

@ -1,5 +1,12 @@
from haystack.components.generators.hugging_face_local import HuggingFaceLocalGenerator
from haystack.components.generators.hugging_face_tgi import HuggingFaceTGIGenerator
from haystack.components.generators.openai import OpenAIGenerator, GPTGenerator
from haystack.components.generators.azure import AzureOpenAIGenerator
__all__ = ["HuggingFaceLocalGenerator", "HuggingFaceTGIGenerator", "OpenAIGenerator", "GPTGenerator"]
__all__ = [
"HuggingFaceLocalGenerator",
"HuggingFaceTGIGenerator",
"OpenAIGenerator",
"GPTGenerator",
"AzureOpenAIGenerator",
]

View File

@ -0,0 +1,158 @@
import logging
import os
from typing import Optional, Callable, Dict, Any
# pylint: disable=import-error
from openai.lib.azure import AzureADTokenProvider, AzureOpenAI
from haystack import default_to_dict, default_from_dict
from haystack.components.generators import OpenAIGenerator
from haystack.components.generators.utils import serialize_callback_handler, deserialize_callback_handler
from haystack.dataclasses import StreamingChunk
logger = logging.getLogger(__name__)
class AzureOpenAIGenerator(OpenAIGenerator):
"""
Enables text generation using OpenAI's large language models (LLMs) on Azure. It supports gpt-4 and gpt-3.5-turbo
family of models.
Users can pass any text generation parameters valid for the `openai.ChatCompletion.create` method
directly to this component via the `**generation_kwargs` parameter in __init__ or the `**generation_kwargs`
parameter in `run` method.
For more details on OpenAI models deployed on Azure, refer to the Microsoft
[documentation](https://learn.microsoft.com/en-us/azure/ai-services/openai/).
```python
from haystack.components.generators import AzureOpenAIGenerator
client = AzureOpenAIGenerator(azure_endpoint="<Your Azure endpoint e.g. `https://your-company.azure.openai.com/>",
api_key="<you api key>",
azure_deployment="<this a model name, e.g. gpt-35-turbo>")
response = client.run("What's Natural Language Processing? Be brief.")
print(response)
>> {'replies': ['Natural Language Processing (NLP) is a branch of artificial intelligence that focuses on
>> the interaction between computers and human language. It involves enabling computers to understand, interpret,
>> and respond to natural human language in a way that is both meaningful and useful.'], 'meta': [{'model':
>> 'gpt-3.5-turbo-0613', 'index': 0, 'finish_reason': 'stop', 'usage': {'prompt_tokens': 16,
>> 'completion_tokens': 49, 'total_tokens': 65}}]}
```
Key Features and Compatibility:
- **Primary Compatibility**: Designed to work seamlessly with gpt-4, gpt-3.5-turbo family of models.
- **Streaming Support**: Supports streaming responses from the OpenAI API.
- **Customizability**: Supports all parameters supported by the OpenAI API.
Input and Output Format:
- **String Format**: This component uses the strings for both input and output.
"""
# pylint: disable=super-init-not-called
def __init__(
self,
azure_endpoint: Optional[str] = None,
api_version: Optional[str] = "2023-05-15",
azure_deployment: Optional[str] = "gpt-35-turbo",
api_key: Optional[str] = None,
azure_ad_token: Optional[str] = None,
azure_ad_token_provider: Optional[AzureADTokenProvider] = None,
organization: Optional[str] = None,
streaming_callback: Optional[Callable[[StreamingChunk], None]] = None,
system_prompt: Optional[str] = None,
generation_kwargs: Optional[Dict[str, Any]] = None,
):
"""
:param azure_endpoint: The endpoint of the deployed model, e.g. `https://example-resource.azure.openai.com/`
:param api_version: The version of the API to use. Defaults to 2023-05-15
:param azure_deployment: The deployment of the model, usually the model name.
:param api_key: The API key to use for authentication.
:param azure_ad_token: Azure Active Directory token, see https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id
:param azure_ad_token_provider: A function that returns an Azure Active Directory token, will be invoked
on every request.
:param organization: The Organization ID, defaults to `None`. See
[production best practices](https://platform.openai.com/docs/guides/production-best-practices/setting-up-your-organization).
:param streaming_callback: A callback function that is called when a new token is received from the stream.
The callback function accepts StreamingChunk as an argument.
:param system_prompt: The prompt to use for the system. If not provided, the system prompt will be
:param generation_kwargs: Other parameters to use for the model. These parameters are all sent directly to
the OpenAI endpoint. See OpenAI [documentation](https://platform.openai.com/docs/api-reference/chat) for
more details.
Some of the supported parameters:
- `max_tokens`: The maximum number of tokens the output text can have.
- `temperature`: What sampling temperature to use. Higher values mean the model will take more risks.
Try 0.9 for more creative applications and 0 (argmax sampling) for ones with a well-defined answer.
- `top_p`: An alternative to sampling with temperature, called nucleus sampling, where the model
considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens
comprising the top 10% probability mass are considered.
- `n`: How many completions to generate for each prompt. For example, if the LLM gets 3 prompts and n is 2,
it will generate two completions for each of the three prompts, ending up with 6 completions in total.
- `stop`: One or more sequences after which the LLM should stop generating tokens.
- `presence_penalty`: What penalty to apply if a token is already present at all. Bigger values mean
the model will be less likely to repeat the same token in the text.
- `frequency_penalty`: What penalty to apply if a token has already been generated in the text.
Bigger values mean the model will be less likely to repeat the same token in the text.
- `logit_bias`: Add a logit bias to specific tokens. The keys of the dictionary are tokens, and the
values are the bias to add to that token.
"""
# We intentionally do not call super().__init__ here because we only need to instantiate the client to interact
# with the API.
# Why is this here?
# AzureOpenAI init is forcing us to use an init method that takes either base_url or azure_endpoint as not
# None init parameters. This way we accommodate the use case where env var AZURE_OPENAI_ENDPOINT is set instead
# of passing it as a parameter.
azure_endpoint = azure_endpoint or os.environ.get("AZURE_OPENAI_ENDPOINT")
if not azure_endpoint:
raise ValueError("Please provide an Azure endpoint or set the environment variable AZURE_OPENAI_ENDPOINT.")
self.generation_kwargs = generation_kwargs or {}
self.system_prompt = system_prompt
self.streaming_callback = streaming_callback
self.api_version = api_version
self.azure_endpoint = azure_endpoint
self.azure_deployment = azure_deployment
self.organization = organization
self.model_name: str = azure_deployment or "gpt-35-turbo"
self.client = AzureOpenAI(
api_version=api_version,
azure_endpoint=azure_endpoint,
azure_deployment=azure_deployment,
api_key=api_key,
azure_ad_token=azure_ad_token,
azure_ad_token_provider=azure_ad_token_provider,
organization=organization,
)
def to_dict(self) -> Dict[str, Any]:
"""
Serialize this component to a dictionary.
:return: The serialized component as a dictionary.
"""
callback_name = serialize_callback_handler(self.streaming_callback) if self.streaming_callback else None
return default_to_dict(
self,
azure_endpoint=self.azure_endpoint,
azure_deployment=self.azure_deployment,
organization=self.organization,
api_version=self.api_version,
streaming_callback=callback_name,
generation_kwargs=self.generation_kwargs,
system_prompt=self.system_prompt,
)
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "AzureOpenAIGenerator":
"""
Deserialize this component from a dictionary.
:param data: The dictionary representation of this component.
:return: The deserialized component instance.
"""
init_params = data.get("init_parameters", {})
serialized_callback_handler = init_params.get("streaming_callback")
if serialized_callback_handler:
data["init_parameters"]["streaming_callback"] = deserialize_callback_handler(serialized_callback_handler)
return default_from_dict(cls, data)

View File

@ -1,4 +1,5 @@
from haystack.components.generators.chat.hugging_face_tgi import HuggingFaceTGIChatGenerator
from haystack.components.generators.chat.openai import OpenAIChatGenerator, GPTChatGenerator
from haystack.components.generators.chat.azure import AzureOpenAIChatGenerator
__all__ = ["HuggingFaceTGIChatGenerator", "OpenAIChatGenerator", "GPTChatGenerator"]
__all__ = ["HuggingFaceTGIChatGenerator", "OpenAIChatGenerator", "GPTChatGenerator", "AzureOpenAIChatGenerator"]

View File

@ -0,0 +1,161 @@
import logging
import os
from typing import Optional, Callable, Dict, Any
# pylint: disable=import-error
from openai.lib.azure import AzureADTokenProvider, AzureOpenAI
from haystack import default_to_dict, default_from_dict
from haystack.components.generators.chat import OpenAIChatGenerator
from haystack.components.generators.utils import serialize_callback_handler, deserialize_callback_handler
from haystack.dataclasses import StreamingChunk
logger = logging.getLogger(__name__)
class AzureOpenAIChatGenerator(OpenAIChatGenerator):
"""
Enables text generation using OpenAI's large language models (LLMs) on Azure. It supports gpt-4 and gpt-3.5-turbo
family of models accessed through the chat completions API endpoint.
Users can pass any text generation parameters valid for the `openai.ChatCompletion.create` method
directly to this component via the `**generation_kwargs` parameter in __init__ or the `**generation_kwargs`
parameter in `run` method.
For more details on OpenAI models deployed on Azure, refer to the Microsoft
[documentation](https://learn.microsoft.com/en-us/azure/ai-services/openai/).
```python
from haystack.components.generators.chat import AzureOpenAIGenerator
from haystack.dataclasses import ChatMessage
messages = [ChatMessage.from_user("What's Natural Language Processing?")]
client = AzureOpenAIGenerator(azure_endpoint="<Your Azure endpoint e.g. `https://your-company.azure.openai.com/>",
api_key="<you api key>",
azure_deployment="<this a model name, e.g. gpt-35-turbo>")
response = client.run(messages)
print(response)
>>{'replies': [ChatMessage(content='Natural Language Processing (NLP) is a branch of artificial intelligence
>>that focuses on enabling computers to understand, interpret, and generate human language in a way that is
>>meaningful and useful.', role=<ChatRole.ASSISTANT: 'assistant'>, name=None,
>>meta={'model': 'gpt-3.5-turbo-0613', 'index': 0, 'finish_reason': 'stop',
>>'usage': {'prompt_tokens': 15, 'completion_tokens': 36, 'total_tokens': 51}})]}
```
Key Features and Compatibility:
- **Primary Compatibility**: Designed to work seamlessly with the OpenAI API Chat Completion endpoint
and gpt-4 and gpt-3.5-turbo family of models.
- **Streaming Support**: Supports streaming responses from the OpenAI API Chat Completion endpoint.
- **Customizability**: Supports all parameters supported by the OpenAI API Chat Completion endpoint.
Input and Output Format:
- **ChatMessage Format**: This component uses the ChatMessage format for structuring both input and output,
ensuring coherent and contextually relevant responses in chat-based text generation scenarios. Details on the
ChatMessage format can be found at: https://github.com/openai/openai-python/blob/main/chatml.md.
"""
# pylint: disable=super-init-not-called
def __init__(
self,
azure_endpoint: Optional[str] = None,
api_version: Optional[str] = "2023-05-15",
azure_deployment: Optional[str] = "gpt-35-turbo",
api_key: Optional[str] = None,
azure_ad_token: Optional[str] = None,
azure_ad_token_provider: Optional[AzureADTokenProvider] = None,
organization: Optional[str] = None,
streaming_callback: Optional[Callable[[StreamingChunk], None]] = None,
generation_kwargs: Optional[Dict[str, Any]] = None,
):
"""
:param azure_endpoint: The endpoint of the deployed model, e.g. `https://example-resource.azure.openai.com/`
:param api_version: The version of the API to use. Defaults to 2023-05-15
:param azure_deployment: The deployment of the model, usually the model name.
:param api_key: The API key to use for authentication.
:param azure_ad_token: Azure Active Directory token, see https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id
:param azure_ad_token_provider: A function that returns an Azure Active Directory token, will be invoked
on every request.
:param organization: The Organization ID, defaults to `None`. See
[production best practices](https://platform.openai.com/docs/guides/production-best-practices/setting-up-your-organization).
:param streaming_callback: A callback function that is called when a new token is received from the stream.
The callback function accepts StreamingChunk as an argument.
:param generation_kwargs: Other parameters to use for the model. These parameters are all sent directly to
the OpenAI endpoint. See OpenAI [documentation](https://platform.openai.com/docs/api-reference/chat) for
more details.
Some of the supported parameters:
- `max_tokens`: The maximum number of tokens the output text can have.
- `temperature`: What sampling temperature to use. Higher values mean the model will take more risks.
Try 0.9 for more creative applications and 0 (argmax sampling) for ones with a well-defined answer.
- `top_p`: An alternative to sampling with temperature, called nucleus sampling, where the model
considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens
comprising the top 10% probability mass are considered.
- `n`: How many completions to generate for each prompt. For example, if the LLM gets 3 prompts and n is 2,
it will generate two completions for each of the three prompts, ending up with 6 completions in total.
- `stop`: One or more sequences after which the LLM should stop generating tokens.
- `presence_penalty`: What penalty to apply if a token is already present at all. Bigger values mean
the model will be less likely to repeat the same token in the text.
- `frequency_penalty`: What penalty to apply if a token has already been generated in the text.
Bigger values mean the model will be less likely to repeat the same token in the text.
- `logit_bias`: Add a logit bias to specific tokens. The keys of the dictionary are tokens, and the
values are the bias to add to that token.
"""
# We intentionally do not call super().__init__ here because we only need to instantiate the client to interact
# with the API.
# Why is this here?
# AzureOpenAI init is forcing us to use an init method that takes either base_url or azure_endpoint as not
# None init parameters. This way we accommodate the use case where env var AZURE_OPENAI_ENDPOINT is set instead
# of passing it as a parameter.
azure_endpoint = azure_endpoint or os.environ.get("AZURE_OPENAI_ENDPOINT")
if not azure_endpoint:
raise ValueError("Please provide an Azure endpoint or set the environment variable AZURE_OPENAI_ENDPOINT.")
self.generation_kwargs = generation_kwargs or {}
self.streaming_callback = streaming_callback
self.api_version = api_version
self.azure_endpoint = azure_endpoint
self.azure_deployment = azure_deployment
self.organization = organization
self.model_name = azure_deployment or "gpt-35-turbo"
self.client = AzureOpenAI(
api_version=api_version,
azure_endpoint=azure_endpoint,
azure_deployment=azure_deployment,
api_key=api_key,
azure_ad_token=azure_ad_token,
azure_ad_token_provider=azure_ad_token_provider,
organization=organization,
)
def to_dict(self) -> Dict[str, Any]:
"""
Serialize this component to a dictionary.
:return: The serialized component as a dictionary.
"""
callback_name = serialize_callback_handler(self.streaming_callback) if self.streaming_callback else None
return default_to_dict(
self,
azure_endpoint=self.azure_endpoint,
azure_deployment=self.azure_deployment,
organization=self.organization,
api_version=self.api_version,
streaming_callback=callback_name,
generation_kwargs=self.generation_kwargs,
)
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "AzureOpenAIChatGenerator":
"""
Deserialize this component from a dictionary.
:param data: The dictionary representation of this component.
:return: The deserialized component instance.
"""
init_params = data.get("init_parameters", {})
serialized_callback_handler = init_params.get("streaming_callback")
if serialized_callback_handler:
data["init_parameters"]["streaming_callback"] = deserialize_callback_handler(serialized_callback_handler)
return default_from_dict(cls, data)

View File

@ -0,0 +1,4 @@
---
features:
- |
Adds support for Azure OpenAI models with AzureOpenAIGenerator and AzureOpenAIChatGenerator components.

View File

@ -0,0 +1,89 @@
import os
import pytest
from openai import OpenAIError
from haystack.components.generators.chat import AzureOpenAIChatGenerator
from haystack.components.generators.utils import default_streaming_callback
from haystack.dataclasses import ChatMessage
class TestOpenAIChatGenerator:
def test_init_default(self):
component = AzureOpenAIChatGenerator(azure_endpoint="some-non-existing-endpoint", api_key="test-api-key")
assert component.client.api_key == "test-api-key"
assert component.azure_deployment == "gpt-35-turbo"
assert component.streaming_callback is None
assert not component.generation_kwargs
def test_init_fail_wo_api_key(self, monkeypatch):
monkeypatch.delenv("AZURE_OPENAI_API_KEY", raising=False)
with pytest.raises(OpenAIError):
AzureOpenAIChatGenerator(azure_endpoint="some-non-existing-endpoint")
def test_init_with_parameters(self):
component = AzureOpenAIChatGenerator(
azure_endpoint="some-non-existing-endpoint",
api_key="test-api-key",
streaming_callback=default_streaming_callback,
generation_kwargs={"max_tokens": 10, "some_test_param": "test-params"},
)
assert component.client.api_key == "test-api-key"
assert component.azure_deployment == "gpt-35-turbo"
assert component.streaming_callback is default_streaming_callback
assert component.generation_kwargs == {"max_tokens": 10, "some_test_param": "test-params"}
def test_to_dict_default(self):
component = AzureOpenAIChatGenerator(api_key="test-api-key", azure_endpoint="some-non-existing-endpoint")
data = component.to_dict()
assert data == {
"type": "haystack.components.generators.chat.azure.AzureOpenAIChatGenerator",
"init_parameters": {
"api_version": "2023-05-15",
"azure_endpoint": "some-non-existing-endpoint",
"azure_deployment": "gpt-35-turbo",
"organization": None,
"streaming_callback": None,
"generation_kwargs": {},
},
}
def test_to_dict_with_parameters(self):
component = AzureOpenAIChatGenerator(
api_key="test-api-key",
azure_endpoint="some-non-existing-endpoint",
generation_kwargs={"max_tokens": 10, "some_test_param": "test-params"},
)
data = component.to_dict()
assert data == {
"type": "haystack.components.generators.chat.azure.AzureOpenAIChatGenerator",
"init_parameters": {
"api_version": "2023-05-15",
"azure_endpoint": "some-non-existing-endpoint",
"azure_deployment": "gpt-35-turbo",
"organization": None,
"streaming_callback": None,
"generation_kwargs": {"max_tokens": 10, "some_test_param": "test-params"},
},
}
@pytest.mark.integration
@pytest.mark.skipif(
not os.environ.get("AZURE_OPENAI_API_KEY", None) and not os.environ.get("AZURE_OPENAI_ENDPOINT", None),
reason=(
"Please export env variables called AZURE_OPENAI_API_KEY containing "
"the Azure OpenAI key, AZURE_OPENAI_ENDPOINT containing "
"the Azure OpenAI endpoint URL to run this test."
),
)
def test_live_run(self):
chat_messages = [ChatMessage.from_user("What's the capital of France")]
component = AzureOpenAIChatGenerator(organization="HaystackCI")
results = component.run(chat_messages)
assert len(results["replies"]) == 1
message: ChatMessage = results["replies"][0]
assert "Paris" in message.content
assert "gpt-35-turbo" in message.meta["model"]
assert message.meta["finish_reason"] == "stop"
# additional tests intentionally omitted as they are covered by test_openai.py

View File

@ -0,0 +1,99 @@
import os
import pytest
from openai import OpenAIError
from haystack.components.generators import AzureOpenAIGenerator
from haystack.components.generators.utils import default_streaming_callback
class TestAzureOpenAIGenerator:
def test_init_default(self):
component = AzureOpenAIGenerator(api_key="test-api-key", azure_endpoint="some-non-existing-endpoint")
assert component.client.api_key == "test-api-key"
assert component.azure_deployment == "gpt-35-turbo"
assert component.streaming_callback is None
assert not component.generation_kwargs
def test_init_fail_wo_api_key(self, monkeypatch):
monkeypatch.delenv("AZURE_OPENAI_API_KEY", raising=False)
with pytest.raises(OpenAIError):
AzureOpenAIGenerator(azure_endpoint="some-non-existing-endpoint")
def test_init_with_parameters(self):
component = AzureOpenAIGenerator(
api_key="test-api-key",
azure_endpoint="some-non-existing-endpoint",
azure_deployment="gpt-35-turbo",
streaming_callback=default_streaming_callback,
generation_kwargs={"max_tokens": 10, "some_test_param": "test-params"},
)
assert component.client.api_key == "test-api-key"
assert component.azure_deployment == "gpt-35-turbo"
assert component.streaming_callback is default_streaming_callback
assert component.generation_kwargs == {"max_tokens": 10, "some_test_param": "test-params"}
def test_to_dict_default(self):
component = AzureOpenAIGenerator(api_key="test-api-key", azure_endpoint="some-non-existing-endpoint")
data = component.to_dict()
assert data == {
"type": "haystack.components.generators.azure.AzureOpenAIGenerator",
"init_parameters": {
"azure_deployment": "gpt-35-turbo",
"api_version": "2023-05-15",
"streaming_callback": None,
"azure_endpoint": "some-non-existing-endpoint",
"organization": None,
"system_prompt": None,
"generation_kwargs": {},
},
}
def test_to_dict_with_parameters(self):
component = AzureOpenAIGenerator(
api_key="test-api-key",
azure_endpoint="some-non-existing-endpoint",
generation_kwargs={"max_tokens": 10, "some_test_param": "test-params"},
)
data = component.to_dict()
assert data == {
"type": "haystack.components.generators.azure.AzureOpenAIGenerator",
"init_parameters": {
"azure_deployment": "gpt-35-turbo",
"api_version": "2023-05-15",
"streaming_callback": None,
"azure_endpoint": "some-non-existing-endpoint",
"organization": None,
"system_prompt": None,
"generation_kwargs": {"max_tokens": 10, "some_test_param": "test-params"},
},
}
@pytest.mark.integration
@pytest.mark.skipif(
not os.environ.get("AZURE_OPENAI_API_KEY", None) and not os.environ.get("AZURE_OPENAI_ENDPOINT", None),
reason=(
"Please export env variables called AZURE_OPENAI_API_KEY containing "
"the Azure OpenAI key, AZURE_OPENAI_ENDPOINT containing "
"the Azure OpenAI endpoint URL to run this test."
),
)
def test_live_run(self):
component = AzureOpenAIGenerator(organization="HaystackCI")
results = component.run("What's the capital of France?")
assert len(results["replies"]) == 1
assert len(results["meta"]) == 1
response: str = results["replies"][0]
assert "Paris" in response
metadata = results["meta"][0]
assert "gpt-35-turbo" in metadata["model"]
assert metadata["finish_reason"] == "stop"
assert "usage" in metadata
assert "prompt_tokens" in metadata["usage"] and metadata["usage"]["prompt_tokens"] > 0
assert "completion_tokens" in metadata["usage"] and metadata["usage"]["completion_tokens"] > 0
assert "total_tokens" in metadata["usage"] and metadata["usage"]["total_tokens"] > 0
# additional tests intentionally omitted as they are covered by test_openai.py