mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-12-02 18:06:35 +00:00
Tutorial 14 edit (#2663)
* Rewrite Tutorial 14 for increased user-friendliness * Update Tutorial14 .py file to match .ipynb file * Update Documentation & Code Style * unblock the ci * ignore error in jitterbit/get-changed-files Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> Co-authored-by: Sara Zan <sarazanzo94@gmail.com>
This commit is contained in:
parent
325bc5466a
commit
b87c0c950b
1
.github/workflows/tutorials.yml
vendored
1
.github/workflows/tutorials.yml
vendored
@ -65,6 +65,7 @@ jobs:
|
||||
|
||||
- uses: jitterbit/get-changed-files@v1
|
||||
id: diff
|
||||
continue-on-error: true
|
||||
with:
|
||||
format: space-delimited
|
||||
token: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@ -15,10 +15,56 @@ from haystack.nodes import (
|
||||
TransformersQueryClassifier,
|
||||
SklearnQueryClassifier,
|
||||
)
|
||||
import pandas as pd
|
||||
|
||||
|
||||
def tutorial14_query_classifier():
|
||||
"""Tutorial 14: Query Classifiers"""
|
||||
|
||||
# Useful for framing headers
|
||||
def print_header(header):
|
||||
equal_line = "=" * len(header)
|
||||
print(f"\n{equal_line}\n{header}\n{equal_line}\n")
|
||||
|
||||
# Try out the SklearnQueryClassifier on its own
|
||||
# Keyword vs. Question/Statement Classification
|
||||
keyword_classifier = SklearnQueryClassifier()
|
||||
queries = [
|
||||
"Arya Stark father", # Keyword Query
|
||||
"Who was the father of Arya Stark", # Interrogative Query
|
||||
"Lord Eddard was the father of Arya Stark", # Statement Query
|
||||
]
|
||||
k_vs_qs_results = {"Query": [], "Output Branch": [], "Class": []}
|
||||
for query in queries:
|
||||
result = keyword_classifier.run(query=query)
|
||||
k_vs_qs_results["Query"].append(query)
|
||||
k_vs_qs_results["Output Branch"].append(result[1])
|
||||
k_vs_qs_results["Class"].append("Question/Statement" if result[1] == "output_1" else "Keyword")
|
||||
print_header("Keyword vs. Question/Statement Classification")
|
||||
print(pd.DataFrame.from_dict(k_vs_qs_results))
|
||||
print("")
|
||||
|
||||
# Question vs. Statement Classification
|
||||
model_url = (
|
||||
"https://ext-models-haystack.s3.eu-central-1.amazonaws.com/gradboost_query_classifier_statements/model.pickle"
|
||||
)
|
||||
vectorizer_url = "https://ext-models-haystack.s3.eu-central-1.amazonaws.com/gradboost_query_classifier_statements/vectorizer.pickle"
|
||||
question_classifier = SklearnQueryClassifier(model_name_or_path=model_url, vectorizer_name_or_path=vectorizer_url)
|
||||
queries = [
|
||||
"Who was the father of Arya Stark", # Interrogative Query
|
||||
"Lord Eddard was the father of Arya Stark", # Statement Query
|
||||
]
|
||||
q_vs_s_results = {"Query": [], "Output Branch": [], "Class": []}
|
||||
for query in queries:
|
||||
result = question_classifier.run(query=query)
|
||||
q_vs_s_results["Query"].append(query)
|
||||
q_vs_s_results["Output Branch"].append(result[1])
|
||||
q_vs_s_results["Class"].append("Question" if result[1] == "output_1" else "Statement")
|
||||
print_header("Question vs. Statement Classification")
|
||||
print(pd.DataFrame.from_dict(q_vs_s_results))
|
||||
print("")
|
||||
|
||||
# Use in pipelines
|
||||
# Download and prepare data - 517 Wikipedia articles for Game of Thrones
|
||||
doc_dir = "data/tutorial14"
|
||||
s3_url = "https://s3.eu-central-1.amazonaws.com/deepset.ai-farm-qa/datasets/documents/wiki_gameofthrones_txt14.zip"
|
||||
@ -33,10 +79,13 @@ def tutorial14_query_classifier():
|
||||
document_store.delete_documents()
|
||||
document_store.write_documents(got_docs)
|
||||
|
||||
# Initialize Sparse retriever
|
||||
# Pipelines with Keyword vs. Question/Statement Classification
|
||||
print_header("PIPELINES WITH KEYWORD VS. QUESTION/STATEMENT CLASSIFICATION")
|
||||
|
||||
# Initialize sparse retriever for keyword queries
|
||||
bm25_retriever = BM25Retriever(document_store=document_store)
|
||||
|
||||
# Initialize dense retriever
|
||||
# Initialize dense retriever for question/statement queries
|
||||
embedding_retriever = EmbeddingRetriever(
|
||||
document_store=document_store, embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1"
|
||||
)
|
||||
@ -44,10 +93,8 @@ def tutorial14_query_classifier():
|
||||
|
||||
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2")
|
||||
|
||||
print()
|
||||
print("Sklearn keyword classifier")
|
||||
print("==========================")
|
||||
# Here we build the pipeline
|
||||
# Pipeline 1: SklearnQueryClassifier
|
||||
print_header("Pipeline 1: SklearnQueryClassifier")
|
||||
sklearn_keyword_classifier = Pipeline()
|
||||
sklearn_keyword_classifier.add_node(component=SklearnQueryClassifier(), name="QueryClassifier", inputs=["Query"])
|
||||
sklearn_keyword_classifier.add_node(
|
||||
@ -57,48 +104,23 @@ def tutorial14_query_classifier():
|
||||
component=bm25_retriever, name="ESRetriever", inputs=["QueryClassifier.output_2"]
|
||||
)
|
||||
sklearn_keyword_classifier.add_node(component=reader, name="QAReader", inputs=["ESRetriever", "EmbeddingRetriever"])
|
||||
sklearn_keyword_classifier.draw("pipeline_classifier.png")
|
||||
sklearn_keyword_classifier.draw("sklearn_keyword_classifier.png")
|
||||
|
||||
# Run only the dense retriever on the full sentence query
|
||||
res_1 = sklearn_keyword_classifier.run(query="Who is the father of Arya Stark?")
|
||||
print("\n===============================")
|
||||
print("Embedding Retriever Results" + "\n" + "=" * 15)
|
||||
print_header("Question Query Results")
|
||||
print_answers(res_1, details="minimum")
|
||||
print("")
|
||||
|
||||
# Run only the sparse retriever on a keyword based query
|
||||
res_2 = sklearn_keyword_classifier.run(query="arya stark father")
|
||||
print("\n===============================")
|
||||
print("ES Results" + "\n" + "=" * 15)
|
||||
print_header("Keyword Query Results")
|
||||
print_answers(res_2, details="minimum")
|
||||
print("")
|
||||
|
||||
# Run only the dense retriever on the full sentence query
|
||||
res_3 = sklearn_keyword_classifier.run(query="which country was jon snow filmed ?")
|
||||
print("\n===============================")
|
||||
print("Embedding Retriever Results" + "\n" + "=" * 15)
|
||||
print_answers(res_3, details="minimum")
|
||||
# Pipeline 2: TransformersQueryClassifier
|
||||
print_header("Pipeline 2: TransformersQueryClassifier")
|
||||
|
||||
# Run only the sparse retriever on a keyword based query
|
||||
res_4 = sklearn_keyword_classifier.run(query="jon snow country")
|
||||
print("\n===============================")
|
||||
print("ES Results" + "\n" + "=" * 15)
|
||||
print_answers(res_4, details="minimum")
|
||||
|
||||
# Run only the dense retriever on the full sentence query
|
||||
res_5 = sklearn_keyword_classifier.run(query="who are the younger brothers of arya stark ?")
|
||||
print("\n===============================")
|
||||
print("Embedding Retriever Results" + "\n" + "=" * 15)
|
||||
print_answers(res_5, details="minimum")
|
||||
|
||||
# Run only the sparse retriever on a keyword based query
|
||||
res_6 = sklearn_keyword_classifier.run(query="arya stark younger brothers")
|
||||
print("\n===============================")
|
||||
print("ES Results" + "\n" + "=" * 15)
|
||||
print_answers(res_6, details="minimum")
|
||||
|
||||
print()
|
||||
print("Transformer keyword classifier")
|
||||
print("==============================")
|
||||
# Here we build the pipeline
|
||||
transformer_keyword_classifier = Pipeline()
|
||||
transformer_keyword_classifier.add_node(
|
||||
component=TransformersQueryClassifier(), name="QueryClassifier", inputs=["Query"]
|
||||
@ -112,49 +134,21 @@ def tutorial14_query_classifier():
|
||||
transformer_keyword_classifier.add_node(
|
||||
component=reader, name="QAReader", inputs=["ESRetriever", "EmbeddingRetriever"]
|
||||
)
|
||||
transformer_keyword_classifier.draw("pipeline_classifier.png")
|
||||
|
||||
# Run only the dense retriever on the full sentence query
|
||||
res_1 = transformer_keyword_classifier.run(query="Who is the father of Arya Stark?")
|
||||
print("\n===============================")
|
||||
print("Embedding Retriever Results" + "\n" + "=" * 15)
|
||||
print_header("Question Query Results")
|
||||
print_answers(res_1, details="minimum")
|
||||
print("")
|
||||
|
||||
# Run only the sparse retriever on a keyword based query
|
||||
res_2 = transformer_keyword_classifier.run(query="arya stark father")
|
||||
print("\n===============================")
|
||||
print("ES Results" + "\n" + "=" * 15)
|
||||
print_header("Keyword Query Results")
|
||||
print_answers(res_2, details="minimum")
|
||||
print("")
|
||||
|
||||
# Run only the dense retriever on the full sentence query
|
||||
res_3 = transformer_keyword_classifier.run(query="which country was jon snow filmed ?")
|
||||
print("\n===============================")
|
||||
print("Embedding Retriever Results" + "\n" + "=" * 15)
|
||||
print_answers(res_3, details="minimum")
|
||||
|
||||
# Run only the sparse retriever on a keyword based query
|
||||
res_4 = transformer_keyword_classifier.run(query="jon snow country")
|
||||
print("\n===============================")
|
||||
print("ES Results" + "\n" + "=" * 15)
|
||||
print_answers(res_4, details="minimum")
|
||||
|
||||
# Run only the dense retriever on the full sentence query
|
||||
res_5 = transformer_keyword_classifier.run(query="who are the younger brothers of arya stark ?")
|
||||
print("\n===============================")
|
||||
print("Embedding Retriever Results" + "\n" + "=" * 15)
|
||||
print_answers(res_5, details="minimum")
|
||||
|
||||
# Run only the sparse retriever on a keyword based query
|
||||
res_6 = transformer_keyword_classifier.run(query="arya stark younger brothers")
|
||||
print("\n===============================")
|
||||
print("ES Results" + "\n" + "=" * 15)
|
||||
print_answers(res_6, details="minimum")
|
||||
|
||||
print()
|
||||
print("Transformer question classifier")
|
||||
print("===============================")
|
||||
|
||||
# Here we build the pipeline
|
||||
# Pipeline with Question vs. Statement Classification
|
||||
print_header("PIPELINE WITH QUESTION VS. STATEMENT CLASSIFICATION")
|
||||
transformer_question_classifier = Pipeline()
|
||||
transformer_question_classifier.add_node(component=embedding_retriever, name="EmbeddingRetriever", inputs=["Query"])
|
||||
transformer_question_classifier.add_node(
|
||||
@ -163,58 +157,18 @@ def tutorial14_query_classifier():
|
||||
inputs=["EmbeddingRetriever"],
|
||||
)
|
||||
transformer_question_classifier.add_node(component=reader, name="QAReader", inputs=["QueryClassifier.output_1"])
|
||||
transformer_question_classifier.draw("question_classifier.png")
|
||||
transformer_question_classifier.draw("transformer_question_classifier.png")
|
||||
|
||||
# Run only the QA reader on the question query
|
||||
res_1 = transformer_question_classifier.run(query="Who is the father of Arya Stark?")
|
||||
print("\n===============================")
|
||||
print("Embedding Retriever Results" + "\n" + "=" * 15)
|
||||
print_header("Question Query Results")
|
||||
print_answers(res_1, details="minimum")
|
||||
print("")
|
||||
|
||||
res_2 = transformer_question_classifier.run(query="Arya Stark was the daughter of a Lord.")
|
||||
print("\n===============================")
|
||||
print("ES Results" + "\n" + "=" * 15)
|
||||
print_header("Statement Query Results")
|
||||
print_documents(res_2)
|
||||
|
||||
# Here we create the keyword vs question/statement query classifier
|
||||
|
||||
queries = [
|
||||
"arya stark father",
|
||||
"jon snow country",
|
||||
"who is the father of arya stark",
|
||||
"which country was jon snow filmed?",
|
||||
]
|
||||
|
||||
keyword_classifier = TransformersQueryClassifier()
|
||||
|
||||
for query in queries:
|
||||
result = keyword_classifier.run(query=query)
|
||||
if result[1] == "output_1":
|
||||
category = "question/statement"
|
||||
else:
|
||||
category = "keyword"
|
||||
|
||||
print(f"Query: {query}, raw_output: {result}, class: {category}")
|
||||
|
||||
# Here we create the question vs statement query classifier
|
||||
|
||||
queries = [
|
||||
"Lord Eddard was the father of Arya Stark.",
|
||||
"Jon Snow was filmed in United Kingdom.",
|
||||
"who is the father of arya stark?",
|
||||
"Which country was jon snow filmed in?",
|
||||
]
|
||||
|
||||
question_classifier = TransformersQueryClassifier(model_name_or_path="shahrukhx01/question-vs-statement-classifier")
|
||||
|
||||
for query in queries:
|
||||
result = question_classifier.run(query=query)
|
||||
if result[1] == "output_1":
|
||||
category = "question"
|
||||
else:
|
||||
category = "statement"
|
||||
|
||||
print(f"Query: {query}, raw_output: {result}, class: {category}")
|
||||
print("")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user