feat: Add DocumentMeanReciprocalRank (#7468)

* Add DocumentMeanReciprocalRank

* Fix float precision error
This commit is contained in:
Silvano Cerza 2024-04-04 14:55:37 +02:00 committed by GitHub
parent 7799909069
commit bdc25ca2a0
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 165 additions and 0 deletions

View File

@ -0,0 +1,79 @@
from typing import Any, Dict, List
from haystack import Document, component
@component
class DocumentMeanReciprocalRank:
"""
Evaluator that calculates the mean reciprocal rank of the retrieved documents.
MRR measures how high the first retrieved document is ranked.
Each question can have multiple ground truth documents and multiple retrieved documents.
`DocumentMeanReciprocalRank` doesn't normalize its inputs, the `DocumentCleaner` component
should be used to clean and normalize the documents before passing them to this evaluator.
Usage example:
```python
from haystack.components.evaluators import AnswerExactMatchEvaluator
evaluator = DocumentMeanReciprocalRank()
result = evaluator.run(
ground_truth_documents=[
[Document(content="France")],
[Document(content="9th century"), Document(content="9th")],
],
retrieved_documents=[
[Document(content="France")],
[Document(content="9th century"), Document(content="10th century"), Document(content="9th")],
],
)
print(result["individual_scores"])
# [1.0, 0.8333333333333333]
print(result["score"])
# 0.9166666666666666
```
"""
@component.output_types(score=float, individual_scores=List[float])
def run(
self, ground_truth_documents: List[List[Document]], retrieved_documents: List[List[Document]]
) -> Dict[str, Any]:
"""
Run the DocumentMeanReciprocalRank on the given inputs.
`ground_truth_documents` and `retrieved_documents` must have the same length.
:param ground_truth_documents:
A list of expected documents for each question.
:param retrieved_documents:
A list of retrieved documents for each question.
:returns:
A dictionary with the following outputs:
- `score` - The average of calculated scores.
- `invididual_scores` - A list of numbers from 0.0 to 1.0 that represents how high the first retrieved document is ranked.
"""
if len(ground_truth_documents) != len(retrieved_documents):
msg = "The length of ground_truth_documents and retrieved_documents must be the same."
raise ValueError(msg)
individual_scores = []
for ground_truth, retrieved in zip(ground_truth_documents, retrieved_documents):
score = 0.0
for ground_document in ground_truth:
if ground_document.content is None:
continue
for rank, retrieved_document in enumerate(retrieved):
if retrieved_document.content is None:
continue
if ground_document.content in retrieved_document.content:
score = 1 / (rank + 1)
break
individual_scores.append(score)
score = sum(individual_scores) / len(retrieved_documents)
return {"score": score, "individual_scores": individual_scores}

View File

@ -0,0 +1,4 @@
---
features:
- |
Add DocumentMeanReciprocalRank, it can be used to calculate mean reciprocal rank of retrieved documents.

View File

@ -0,0 +1,82 @@
import pytest
from haystack import Document
from haystack.components.evaluators.document_mrr import DocumentMeanReciprocalRank
def test_run_with_all_matching():
evaluator = DocumentMeanReciprocalRank()
result = evaluator.run(
ground_truth_documents=[[Document(content="Berlin")], [Document(content="Paris")]],
retrieved_documents=[[Document(content="Berlin")], [Document(content="Paris")]],
)
assert result == {"individual_scores": [1.0, 1.0], "score": 1.0}
def test_run_with_no_matching():
evaluator = DocumentMeanReciprocalRank()
result = evaluator.run(
ground_truth_documents=[[Document(content="Berlin")], [Document(content="Paris")]],
retrieved_documents=[[Document(content="Paris")], [Document(content="London")]],
)
assert result == {"individual_scores": [0.0, 0.0], "score": 0.0}
def test_run_with_partial_matching():
evaluator = DocumentMeanReciprocalRank()
result = evaluator.run(
ground_truth_documents=[[Document(content="Berlin")], [Document(content="Paris")]],
retrieved_documents=[[Document(content="Berlin")], [Document(content="London")]],
)
assert result == {"individual_scores": [1.0, 0.0], "score": 0.5}
def test_run_with_complex_data():
evaluator = DocumentMeanReciprocalRank()
result = evaluator.run(
ground_truth_documents=[
[Document(content="France")],
[Document(content="9th century"), Document(content="9th")],
[Document(content="classical music"), Document(content="classical")],
[Document(content="11th century"), Document(content="the 11th")],
[Document(content="Denmark, Iceland and Norway")],
[Document(content="10th century"), Document(content="10th")],
],
retrieved_documents=[
[Document(content="France")],
[Document(content="10th century"), Document(content="9th century"), Document(content="9th")],
[Document(content="rock music"), Document(content="dubstep"), Document(content="classical")],
[Document(content="11th"), Document(content="the 11th"), Document(content="11th century")],
[Document(content="Denmark"), Document(content="Norway"), Document(content="Iceland")],
[
Document(content="10th century"),
Document(content="the first half of the 10th century"),
Document(content="10th"),
Document(content="10th"),
],
],
)
assert result == {
"individual_scores": [1.0, 0.5, 0.3333333333333333, 0.5, 0.0, 1.0],
"score": pytest.approx(0.555555555555555),
}
def test_run_with_different_lengths():
with pytest.raises(ValueError):
evaluator = DocumentMeanReciprocalRank()
evaluator.run(
ground_truth_documents=[[Document(content="Berlin")]],
retrieved_documents=[[Document(content="Berlin")], [Document(content="London")]],
)
with pytest.raises(ValueError):
evaluator = DocumentMeanReciprocalRank()
evaluator.run(
ground_truth_documents=[[Document(content="Berlin")], [Document(content="Paris")]],
retrieved_documents=[[Document(content="Berlin")]],
)