feat: HuggingFaceAPITextEmbedder (#7484)

* add HuggingFaceAPITextEmbedder

* add HuggingFaceAPITextEmbedder

* rm unneeded else

* small fixes

* changes requested

* fix test
This commit is contained in:
Stefano Fiorucci 2024-04-08 14:22:54 +02:00 committed by GitHub
parent 3777f4342f
commit c91bd49cae
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 413 additions and 0 deletions

View File

@ -7,6 +7,7 @@ loaders:
"azure_text_embedder",
"hugging_face_tei_document_embedder",
"hugging_face_tei_text_embedder",
"hugging_face_api_text_embedder",
"openai_document_embedder",
"openai_text_embedder",
"sentence_transformers_document_embedder",

View File

@ -1,5 +1,6 @@
from haystack.components.embedders.azure_document_embedder import AzureOpenAIDocumentEmbedder
from haystack.components.embedders.azure_text_embedder import AzureOpenAITextEmbedder
from haystack.components.embedders.hugging_face_api_text_embedder import HuggingFaceAPITextEmbedder
from haystack.components.embedders.hugging_face_tei_document_embedder import HuggingFaceTEIDocumentEmbedder
from haystack.components.embedders.hugging_face_tei_text_embedder import HuggingFaceTEITextEmbedder
from haystack.components.embedders.openai_document_embedder import OpenAIDocumentEmbedder
@ -10,6 +11,7 @@ from haystack.components.embedders.sentence_transformers_text_embedder import Se
__all__ = [
"HuggingFaceTEITextEmbedder",
"HuggingFaceTEIDocumentEmbedder",
"HuggingFaceAPITextEmbedder",
"SentenceTransformersTextEmbedder",
"SentenceTransformersDocumentEmbedder",
"OpenAITextEmbedder",

View File

@ -0,0 +1,191 @@
import json
from typing import Any, Dict, List, Optional, Union
from haystack import component, default_from_dict, default_to_dict, logging
from haystack.lazy_imports import LazyImport
from haystack.utils import Secret, deserialize_secrets_inplace
from haystack.utils.hf import HFEmbeddingAPIType, HFModelType, check_valid_model
from haystack.utils.url_validation import is_valid_http_url
with LazyImport(message="Run 'pip install \"huggingface_hub>=0.22.0\"'") as huggingface_hub_import:
from huggingface_hub import InferenceClient
logger = logging.getLogger(__name__)
@component
class HuggingFaceAPITextEmbedder:
"""
This component can be used to embed strings using different Hugging Face APIs:
- [Free Serverless Inference API]((https://huggingface.co/inference-api)
- [Paid Inference Endpoints](https://huggingface.co/inference-endpoints)
- [Self-hosted Text Embeddings Inference](https://github.com/huggingface/text-embeddings-inference)
Example usage with the free Serverless Inference API:
```python
from haystack.components.embedders import HuggingFaceAPITextEmbedder
from haystack.utils import Secret
text_embedder = HuggingFaceAPITextEmbedder(api_type="serverless_inference_api",
api_params={"model": "BAAI/bge-small-en-v1.5"},
token=Secret.from_token("<your-api-key>"))
print(text_embedder.run("I love pizza!"))
# {'embedding': [0.017020374536514282, -0.023255806416273117, ...],
```
Example usage with paid Inference Endpoints:
```python
from haystack.components.embedders import HuggingFaceAPITextEmbedder
from haystack.utils import Secret
text_embedder = HuggingFaceAPITextEmbedder(api_type="inference_endpoints",
api_params={"model": "BAAI/bge-small-en-v1.5"},
token=Secret.from_token("<your-api-key>"))
print(text_embedder.run("I love pizza!"))
# {'embedding': [0.017020374536514282, -0.023255806416273117, ...],
```
Example usage with self-hosted Text Embeddings Inference:
```python
from haystack.components.embedders import HuggingFaceAPITextEmbedder
from haystack.utils import Secret
text_embedder = HuggingFaceAPITextEmbedder(api_type="text_embeddings_inference",
api_params={"url": "http://localhost:8080"})
print(text_embedder.run("I love pizza!"))
# {'embedding': [0.017020374536514282, -0.023255806416273117, ...],
```
"""
def __init__(
self,
api_type: Union[HFEmbeddingAPIType, str],
api_params: Dict[str, str],
token: Optional[Secret] = Secret.from_env_var("HF_API_TOKEN", strict=False),
prefix: str = "",
suffix: str = "",
truncate: bool = True,
normalize: bool = False,
):
"""
Create an HuggingFaceAPITextEmbedder component.
:param api_type:
The type of Hugging Face API to use.
:param api_params:
A dictionary containing the following keys:
- `model`: model ID on the Hugging Face Hub. Required when `api_type` is `SERVERLESS_INFERENCE_API`.
- `url`: URL of the inference endpoint. Required when `api_type` is `INFERENCE_ENDPOINTS` or `TEXT_EMBEDDINGS_INFERENCE`.
:param token: The HuggingFace token to use as HTTP bearer authorization
You can find your HF token in your [account settings](https://huggingface.co/settings/tokens)
:param prefix:
A string to add at the beginning of each text.
:param suffix:
A string to add at the end of each text.
:param truncate:
Truncate input text from the end to the maximum length supported by the model.
This parameter takes effect when the `api_type` is `TEXT_EMBEDDINGS_INFERENCE`.
It also takes effect when the `api_type` is `INFERENCE_ENDPOINTS` and the backend is based on Text Embeddings Inference.
This parameter is ignored when the `api_type` is `SERVERLESS_INFERENCE_API` (it is always set to `True` and cannot be changed).
:param normalize:
Normalize the embeddings to unit length.
This parameter takes effect when the `api_type` is `TEXT_EMBEDDINGS_INFERENCE`.
It also takes effect when the `api_type` is `INFERENCE_ENDPOINTS` and the backend is based on Text Embeddings Inference.
This parameter is ignored when the `api_type` is `SERVERLESS_INFERENCE_API` (it is always set to `False` and cannot be changed).
"""
huggingface_hub_import.check()
if isinstance(api_type, str):
api_type = HFEmbeddingAPIType.from_str(api_type)
if api_type == HFEmbeddingAPIType.SERVERLESS_INFERENCE_API:
model = api_params.get("model")
if model is None:
raise ValueError(
"To use the Serverless Inference API, you need to specify the `model` parameter in `api_params`."
)
check_valid_model(model, HFModelType.EMBEDDING, token)
model_or_url = model
elif api_type in [HFEmbeddingAPIType.INFERENCE_ENDPOINTS, HFEmbeddingAPIType.TEXT_EMBEDDINGS_INFERENCE]:
url = api_params.get("url")
if url is None:
raise ValueError(
"To use Text Embeddings Inference or Inference Endpoints, you need to specify the `url` parameter in `api_params`."
)
if not is_valid_http_url(url):
raise ValueError(f"Invalid URL: {url}")
model_or_url = url
self.api_type = api_type
self.api_params = api_params
self.token = token
self.prefix = prefix
self.suffix = suffix
self.truncate = truncate
self.normalize = normalize
self._client = InferenceClient(model_or_url, token=token.resolve_value() if token else None)
def to_dict(self) -> Dict[str, Any]:
"""
Serializes the component to a dictionary.
:returns:
Dictionary with serialized data.
"""
return default_to_dict(
self,
api_type=self.api_type,
api_params=self.api_params,
prefix=self.prefix,
suffix=self.suffix,
token=self.token.to_dict() if self.token else None,
truncate=self.truncate,
normalize=self.normalize,
)
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "HuggingFaceAPITextEmbedder":
"""
Deserializes the component from a dictionary.
:param data:
Dictionary to deserialize from.
:returns:
Deserialized component.
"""
deserialize_secrets_inplace(data["init_parameters"], keys=["token"])
return default_from_dict(cls, data)
@component.output_types(embedding=List[float])
def run(self, text: str):
"""
Embed a single string.
:param text:
Text to embed.
:returns:
A dictionary with the following keys:
- `embedding`: The embedding of the input text.
"""
if not isinstance(text, str):
raise TypeError(
"HuggingFaceAPITextEmbedder expects a string as an input."
"In case you want to embed a list of Documents, please use the HuggingFaceAPIDocumentEmbedder."
)
text_to_embed = self.prefix + text + self.suffix
response = self._client.post(
json={"inputs": [text_to_embed], "truncate": self.truncate, "normalize": self.normalize},
task="feature-extraction",
)
embedding = json.loads(response.decode())[0]
return {"embedding": embedding}

View File

@ -1,4 +1,5 @@
import json
import warnings
from typing import Any, Dict, List, Optional
from urllib.parse import urlparse
@ -74,6 +75,12 @@ class HuggingFaceTEITextEmbedder:
Inference (TEI) endpoints and paid HF Inference Endpoints deployed with TEI. It will be ignored when used
with free HF Inference endpoints or paid HF Inference endpoints deployed without TEI.
"""
warnings.warn(
"`HuggingFaceTEITextEmbedder` is deprecated and will be removed in Haystack 2.3.0."
"Use `HuggingFaceAPITextEmbedder` instead.",
DeprecationWarning,
)
huggingface_hub_import.check()
if url:

View File

@ -55,6 +55,33 @@ class HFGenerationAPIType(Enum):
return mode
class HFEmbeddingAPIType(Enum):
"""
API type to use for Hugging Face API Embedders.
"""
# HF [Text Embeddings Inference (TEI)](https://github.com/huggingface/text-embeddings-inference).
TEXT_EMBEDDINGS_INFERENCE = "text_embeddings_inference"
# HF [Inference Endpoints](https://huggingface.co/inference-endpoints).
INFERENCE_ENDPOINTS = "inference_endpoints"
# HF [Serverless Inference API](https://huggingface.co/inference-api).
SERVERLESS_INFERENCE_API = "serverless_inference_api"
def __str__(self):
return self.value
@staticmethod
def from_str(string: str) -> "HFEmbeddingAPIType":
enum_map = {e.value: e for e in HFEmbeddingAPIType}
mode = enum_map.get(string)
if mode is None:
msg = f"Unknown Hugging Face API type '{string}'. Supported types are: {list(enum_map.keys())}"
raise ValueError(msg)
return mode
class HFModelType(Enum):
EMBEDDING = 1
GENERATION = 2

View File

@ -0,0 +1,13 @@
---
features:
- |
Introduce `HuggingFaceAPITextEmbedder`.
This component can be used to embed strings using different Hugging Face APIs:
- free Serverless Inference API
- paid Inference Endpoints
- self-hosted Text Embeddings Inference.
This embedder will replace the `HuggingFaceTEITextEmbedder` in the future.
deprecations:
- |
Deprecate `HuggingFaceTEITextEmbedder`. This component will be removed in Haystack 2.3.0.
Use `HuggingFaceAPITextEmbedder` instead.

View File

@ -0,0 +1,172 @@
from unittest.mock import MagicMock, patch
import pytest
from huggingface_hub.utils import RepositoryNotFoundError
from numpy import array, random
from haystack.components.embedders import HuggingFaceAPITextEmbedder
from haystack.utils.auth import Secret
from haystack.utils.hf import HFEmbeddingAPIType
@pytest.fixture
def mock_check_valid_model():
with patch(
"haystack.components.embedders.hugging_face_api_text_embedder.check_valid_model", MagicMock(return_value=None)
) as mock:
yield mock
def mock_embedding_generation(json, **kwargs):
response = str(array([random.rand(384) for i in range(len(json["inputs"]))]).tolist()).encode()
return response
class TestHuggingFaceAPITextEmbedder:
def test_init_invalid_api_type(self):
with pytest.raises(ValueError):
HuggingFaceAPITextEmbedder(api_type="invalid_api_type", api_params={})
def test_init_serverless(self, mock_check_valid_model):
model = "BAAI/bge-small-en-v1.5"
embedder = HuggingFaceAPITextEmbedder(
api_type=HFEmbeddingAPIType.SERVERLESS_INFERENCE_API, api_params={"model": model}
)
assert embedder.api_type == HFEmbeddingAPIType.SERVERLESS_INFERENCE_API
assert embedder.api_params == {"model": model}
assert embedder.prefix == ""
assert embedder.suffix == ""
assert embedder.truncate
assert not embedder.normalize
def test_init_serverless_invalid_model(self, mock_check_valid_model):
mock_check_valid_model.side_effect = RepositoryNotFoundError("Invalid model id")
with pytest.raises(RepositoryNotFoundError):
HuggingFaceAPITextEmbedder(
api_type=HFEmbeddingAPIType.SERVERLESS_INFERENCE_API, api_params={"model": "invalid_model_id"}
)
def test_init_serverless_no_model(self):
with pytest.raises(ValueError):
HuggingFaceAPITextEmbedder(
api_type=HFEmbeddingAPIType.SERVERLESS_INFERENCE_API, api_params={"param": "irrelevant"}
)
def test_init_tei(self):
url = "https://some_model.com"
embedder = HuggingFaceAPITextEmbedder(
api_type=HFEmbeddingAPIType.TEXT_EMBEDDINGS_INFERENCE, api_params={"url": url}
)
assert embedder.api_type == HFEmbeddingAPIType.TEXT_EMBEDDINGS_INFERENCE
assert embedder.api_params == {"url": url}
assert embedder.prefix == ""
assert embedder.suffix == ""
assert embedder.truncate
assert not embedder.normalize
def test_init_tei_invalid_url(self):
with pytest.raises(ValueError):
HuggingFaceAPITextEmbedder(
api_type=HFEmbeddingAPIType.TEXT_EMBEDDINGS_INFERENCE, api_params={"url": "invalid_url"}
)
def test_init_tei_no_url(self):
with pytest.raises(ValueError):
HuggingFaceAPITextEmbedder(
api_type=HFEmbeddingAPIType.TEXT_EMBEDDINGS_INFERENCE, api_params={"param": "irrelevant"}
)
def test_to_dict(self, mock_check_valid_model):
embedder = HuggingFaceAPITextEmbedder(
api_type=HFEmbeddingAPIType.SERVERLESS_INFERENCE_API,
api_params={"model": "BAAI/bge-small-en-v1.5"},
prefix="prefix",
suffix="suffix",
truncate=False,
normalize=True,
)
data = embedder.to_dict()
assert data == {
"type": "haystack.components.embedders.hugging_face_api_text_embedder.HuggingFaceAPITextEmbedder",
"init_parameters": {
"api_type": HFEmbeddingAPIType.SERVERLESS_INFERENCE_API,
"api_params": {"model": "BAAI/bge-small-en-v1.5"},
"token": {"env_vars": ["HF_API_TOKEN"], "strict": False, "type": "env_var"},
"prefix": "prefix",
"suffix": "suffix",
"truncate": False,
"normalize": True,
},
}
def test_from_dict(self, mock_check_valid_model):
data = {
"type": "haystack.components.embedders.hugging_face_api_text_embedder.HuggingFaceAPITextEmbedder",
"init_parameters": {
"api_type": HFEmbeddingAPIType.SERVERLESS_INFERENCE_API,
"api_params": {"model": "BAAI/bge-small-en-v1.5"},
"token": {"env_vars": ["HF_API_TOKEN"], "strict": False, "type": "env_var"},
"prefix": "prefix",
"suffix": "suffix",
"truncate": False,
"normalize": True,
},
}
embedder = HuggingFaceAPITextEmbedder.from_dict(data)
assert embedder.api_type == HFEmbeddingAPIType.SERVERLESS_INFERENCE_API
assert embedder.api_params == {"model": "BAAI/bge-small-en-v1.5"}
assert embedder.prefix == "prefix"
assert embedder.suffix == "suffix"
assert not embedder.truncate
assert embedder.normalize
def test_run_wrong_input_format(self, mock_check_valid_model):
embedder = HuggingFaceAPITextEmbedder(
api_type=HFEmbeddingAPIType.SERVERLESS_INFERENCE_API, api_params={"model": "BAAI/bge-small-en-v1.5"}
)
list_integers_input = [1, 2, 3]
with pytest.raises(TypeError):
embedder.run(text=list_integers_input)
def test_run(self, mock_check_valid_model):
with patch("huggingface_hub.InferenceClient.post") as mock_embedding_patch:
mock_embedding_patch.side_effect = mock_embedding_generation
embedder = HuggingFaceAPITextEmbedder(
api_type=HFEmbeddingAPIType.SERVERLESS_INFERENCE_API,
api_params={"model": "BAAI/bge-small-en-v1.5"},
token=Secret.from_token("fake-api-token"),
prefix="prefix ",
suffix=" suffix",
)
result = embedder.run(text="The food was delicious")
mock_embedding_patch.assert_called_once_with(
json={"inputs": ["prefix The food was delicious suffix"], "truncate": True, "normalize": False},
task="feature-extraction",
)
assert len(result["embedding"]) == 384
assert all(isinstance(x, float) for x in result["embedding"])
@pytest.mark.flaky(reruns=5, reruns_delay=5)
@pytest.mark.integration
def test_live_run_serverless(self):
embedder = HuggingFaceAPITextEmbedder(
api_type=HFEmbeddingAPIType.SERVERLESS_INFERENCE_API,
api_params={"model": "sentence-transformers/all-MiniLM-L6-v2"},
)
result = embedder.run(text="The food was delicious")
assert len(result["embedding"]) == 384
assert all(isinstance(x, float) for x in result["embedding"])