mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-08-26 09:26:25 +00:00
refactor: update Squad data (#3513)
* refractor the to_squad data class * fix the validation label * refractor the to_squad data class * fix the validation label * add the test for the to_label object function * fix the tests for to_label_objects * move all the test related to squad data to one file * remove unused imports * revert tiny_augmented.json Co-authored-by: ZanSara <sarazanzo94@gmail.com>
This commit is contained in:
parent
5f62494105
commit
d114a994f1
@ -7,7 +7,7 @@ import pandas as pd
|
||||
from tqdm import tqdm
|
||||
import mmh3
|
||||
|
||||
from haystack.schema import Document, Label
|
||||
from haystack.schema import Document, Label, Answer
|
||||
from haystack.modeling.data_handler.processor import _read_squad_file
|
||||
|
||||
|
||||
@ -84,24 +84,21 @@ class SquadData:
|
||||
documents = [Document(content=rd["context"], id=rd["title"]) for rd in record_dicts]
|
||||
return documents
|
||||
|
||||
# FIXME currently broken! Refactor to new Label objects
|
||||
def to_label_objs(self):
|
||||
"""
|
||||
Export all labels stored in this object to haystack.Label objects.
|
||||
"""
|
||||
df_labels = self.df[["id", "question", "answer_text", "answer_start"]]
|
||||
def to_label_objs(self, answer_type="generative"):
|
||||
"""Export all labels stored in this object to haystack.Label objects"""
|
||||
df_labels = self.df[["id", "question", "answer_text", "answer_start", "context", "document_id"]]
|
||||
record_dicts = df_labels.to_dict("records")
|
||||
labels = [
|
||||
Label( # pylint: disable=no-value-for-parameter
|
||||
query=rd["question"],
|
||||
answer=rd["answer_text"],
|
||||
Label(
|
||||
query=record["question"],
|
||||
answer=Answer(answer=record["answer_text"], answer_type=answer_type),
|
||||
is_correct_answer=True,
|
||||
is_correct_document=True,
|
||||
id=rd["id"],
|
||||
origin=rd.get("origin", "SquadData tool"),
|
||||
document_id=rd.get("document_id", None),
|
||||
id=record["id"],
|
||||
origin=record.get("origin", "gold-label"),
|
||||
document=Document(content=record.get("context"), id=str(record["document_id"])),
|
||||
)
|
||||
for rd in record_dicts
|
||||
for record in record_dicts
|
||||
]
|
||||
return labels
|
||||
|
||||
@ -117,7 +114,7 @@ class SquadData:
|
||||
for question in paragraph["qas"]:
|
||||
q = question["question"]
|
||||
id = question["id"]
|
||||
is_impossible = question["is_impossible"]
|
||||
is_impossible = question.get("is_impossible", False)
|
||||
# For no_answer samples
|
||||
if len(question["answers"]) == 0:
|
||||
flat.append(
|
||||
|
109
test/others/test_squad_data.py
Normal file
109
test/others/test_squad_data.py
Normal file
@ -0,0 +1,109 @@
|
||||
import pandas as pd
|
||||
from haystack.utils.squad_data import SquadData
|
||||
from haystack.utils.augment_squad import augment_squad
|
||||
from ..conftest import SAMPLES_PATH
|
||||
from haystack.schema import Document, Label, Answer
|
||||
|
||||
|
||||
def test_squad_augmentation():
|
||||
input_ = SAMPLES_PATH / "squad" / "tiny.json"
|
||||
output = SAMPLES_PATH / "squad" / "tiny_augmented.json"
|
||||
glove_path = SAMPLES_PATH / "glove" / "tiny.txt" # dummy glove file, will not even be use when augmenting tiny.json
|
||||
multiplication_factor = 5
|
||||
augment_squad(
|
||||
model="distilbert-base-uncased",
|
||||
tokenizer="distilbert-base-uncased",
|
||||
squad_path=input_,
|
||||
output_path=output,
|
||||
glove_path=glove_path,
|
||||
multiplication_factor=multiplication_factor,
|
||||
)
|
||||
original_squad = SquadData.from_file(input_)
|
||||
augmented_squad = SquadData.from_file(output)
|
||||
assert original_squad.count(unit="paragraph") == augmented_squad.count(unit="paragraph") * multiplication_factor
|
||||
|
||||
|
||||
def test_squad_to_df():
|
||||
df = pd.DataFrame(
|
||||
[["title", "context", "question", "id", "answer", 1, False]],
|
||||
columns=["title", "context", "question", "id", "answer_text", "answer_start", "is_impossible"],
|
||||
)
|
||||
expected_result = [
|
||||
{
|
||||
"title": "title",
|
||||
"paragraphs": [
|
||||
{
|
||||
"context": "context",
|
||||
"qas": [
|
||||
{
|
||||
"question": "question",
|
||||
"id": "id",
|
||||
"answers": [{"text": "answer", "answer_start": 1}],
|
||||
"is_impossible": False,
|
||||
}
|
||||
],
|
||||
}
|
||||
],
|
||||
}
|
||||
]
|
||||
|
||||
result = SquadData.df_to_data(df)
|
||||
|
||||
assert result == expected_result
|
||||
|
||||
|
||||
def test_to_label_object():
|
||||
squad_data_list = [
|
||||
{
|
||||
"title": "title",
|
||||
"paragraphs": [
|
||||
{
|
||||
"context": "context",
|
||||
"qas": [
|
||||
{
|
||||
"question": "question",
|
||||
"id": "id",
|
||||
"answers": [{"text": "answer", "answer_start": 1}],
|
||||
"is_impossible": False,
|
||||
},
|
||||
{
|
||||
"question": "another question",
|
||||
"id": "another_id",
|
||||
"answers": [{"text": "this is the response", "answer_start": 1}],
|
||||
"is_impossible": False,
|
||||
},
|
||||
],
|
||||
},
|
||||
{
|
||||
"context": "the second paragraph context",
|
||||
"qas": [
|
||||
{
|
||||
"question": "the third question",
|
||||
"id": "id_3",
|
||||
"answers": [{"text": "this is another response", "answer_start": 1}],
|
||||
"is_impossible": False,
|
||||
},
|
||||
{
|
||||
"question": "the forth question",
|
||||
"id": "id_4",
|
||||
"answers": [{"text": "this is the response", "answer_start": 1}],
|
||||
"is_impossible": False,
|
||||
},
|
||||
],
|
||||
},
|
||||
],
|
||||
}
|
||||
]
|
||||
squad_data = SquadData(squad_data=squad_data_list)
|
||||
answer_type = "generative"
|
||||
labels = squad_data.to_label_objs(answer_type=answer_type)
|
||||
for label, expected_question in zip(labels, squad_data.df.iterrows()):
|
||||
expected_question = expected_question[1]
|
||||
assert isinstance(label, Label)
|
||||
assert isinstance(label.document, Document)
|
||||
assert isinstance(label.answer, Answer)
|
||||
assert label.query == expected_question["question"]
|
||||
assert label.document.content == expected_question.context
|
||||
assert label.document.id == expected_question.document_id
|
||||
assert label.id == expected_question.id
|
||||
assert label.answer.answer == expected_question.answer_text
|
@ -4,18 +4,14 @@ from random import random
|
||||
import numpy as np
|
||||
import pytest
|
||||
import pandas as pd
|
||||
|
||||
import responses
|
||||
from responses import matchers
|
||||
|
||||
from haystack.errors import OpenAIRateLimitError
|
||||
from haystack.utils.deepsetcloud import DeepsetCloud, DeepsetCloudExperiments
|
||||
|
||||
from haystack.utils.preprocessing import convert_files_to_docs, tika_convert_files_to_docs
|
||||
from haystack.utils.cleaning import clean_wiki_text
|
||||
from haystack.utils.augment_squad import augment_squad
|
||||
from haystack.utils.reflection import retry_with_exponential_backoff
|
||||
from haystack.utils.squad_data import SquadData
|
||||
from haystack.utils.context_matching import calculate_context_similarity, match_context, match_contexts
|
||||
|
||||
from ..conftest import DC_API_ENDPOINT, DC_API_KEY, MOCK_DC, SAMPLES_PATH, deepset_cloud_fixture
|
||||
@ -52,54 +48,6 @@ def test_tika_convert_files_to_docs():
|
||||
assert documents and len(documents) > 0
|
||||
|
||||
|
||||
def test_squad_augmentation():
|
||||
input_ = SAMPLES_PATH / "squad" / "tiny.json"
|
||||
output = SAMPLES_PATH / "squad" / "tiny_augmented.json"
|
||||
glove_path = SAMPLES_PATH / "glove" / "tiny.txt" # dummy glove file, will not even be use when augmenting tiny.json
|
||||
multiplication_factor = 5
|
||||
augment_squad(
|
||||
model="distilbert-base-uncased",
|
||||
tokenizer="distilbert-base-uncased",
|
||||
squad_path=input_,
|
||||
output_path=output,
|
||||
glove_path=glove_path,
|
||||
multiplication_factor=multiplication_factor,
|
||||
)
|
||||
original_squad = SquadData.from_file(input_)
|
||||
augmented_squad = SquadData.from_file(output)
|
||||
assert original_squad.count(unit="paragraph") == augmented_squad.count(unit="paragraph") * multiplication_factor
|
||||
|
||||
|
||||
def test_squad_to_df():
|
||||
df = pd.DataFrame(
|
||||
[["title", "context", "question", "id", "answer", 1, False]],
|
||||
columns=["title", "context", "question", "id", "answer_text", "answer_start", "is_impossible"],
|
||||
)
|
||||
|
||||
expected_result = [
|
||||
{
|
||||
"title": "title",
|
||||
"paragraphs": [
|
||||
{
|
||||
"context": "context",
|
||||
"qas": [
|
||||
{
|
||||
"question": "question",
|
||||
"id": "id",
|
||||
"answers": [{"text": "answer", "answer_start": 1}],
|
||||
"is_impossible": False,
|
||||
}
|
||||
],
|
||||
}
|
||||
],
|
||||
}
|
||||
]
|
||||
|
||||
result = SquadData.df_to_data(df)
|
||||
|
||||
assert result == expected_result
|
||||
|
||||
|
||||
def test_calculate_context_similarity_on_parts_of_whole_document():
|
||||
whole_document = TEST_CONTEXT
|
||||
min_length = 100
|
||||
|
Loading…
x
Reference in New Issue
Block a user