mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-08-30 03:16:46 +00:00
Add minimal example for ES (#19)
This commit is contained in:
parent
b009ec24ef
commit
d33ef9c345
@ -8,7 +8,7 @@ import zipfile
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def write_documents_to_db(document_store, document_dir, clean_func=None, only_empty_db=False, split_paragrahs=False):
|
||||
def write_documents_to_db(document_store, document_dir, clean_func=None, only_empty_db=False, split_paragraphs=False):
|
||||
"""
|
||||
Write all text files(.txt) in the sub-directories of the given path to the connected database.
|
||||
|
||||
@ -37,7 +37,7 @@ def write_documents_to_db(document_store, document_dir, clean_func=None, only_em
|
||||
if clean_func:
|
||||
text = clean_func(text)
|
||||
|
||||
if split_paragrahs:
|
||||
if split_paragraphs:
|
||||
for para in text.split("\n\n"):
|
||||
if not para.strip(): # skip empty paragraphs
|
||||
continue
|
||||
@ -54,6 +54,7 @@ def write_documents_to_db(document_store, document_dir, clean_func=None, only_em
|
||||
{
|
||||
"name": path.name,
|
||||
"text": text,
|
||||
"document_id": doc_id
|
||||
}
|
||||
)
|
||||
document_store.write_documents(docs_to_index)
|
||||
|
@ -1,9 +1,10 @@
|
||||
# FARM (incl. transformers 2.3.0 with pipelines)
|
||||
#farm -e git+https://github.com/deepset-ai/FARM.git@1d30237b037050ef0ac5516f427443cdd18a4d43
|
||||
-e git://github.com/deepset-ai/FARM.git@e6224bd87ee50f3ff8bb23415e7f3a1b4793a257#egg=farm
|
||||
farm==0.4.1
|
||||
fastapi
|
||||
uvicorn
|
||||
flask_sqlalchemy
|
||||
pandas
|
||||
psycopg2-binary
|
||||
sklearn
|
||||
elasticsearch
|
||||
elasticsearch_dsl
|
36
tutorials/Tutorial3_Elasticsearch_backend.py
Executable file
36
tutorials/Tutorial3_Elasticsearch_backend.py
Executable file
@ -0,0 +1,36 @@
|
||||
from haystack import Finder
|
||||
from haystack.database.elasticsearch import ElasticsearchDocumentStore
|
||||
|
||||
from haystack.indexing.cleaning import clean_wiki_text
|
||||
from haystack.indexing.io import write_documents_to_db, fetch_archive_from_http
|
||||
from haystack.reader.transformers import TransformersReader
|
||||
from haystack.retriever.elasticsearch import ElasticsearchRetriever
|
||||
from haystack.utils import print_answers
|
||||
|
||||
|
||||
# Our pipeline remains very similar to the one in Tutorial 1, where we had a SQL backend
|
||||
# (https://github.com/deepset-ai/haystack/blob/master/tutorials/Tutorial1_Basic_QA_Pipeline.py)
|
||||
# We therefore only highlight the three key differences here
|
||||
|
||||
# Get documents (same as in Tutorial 1)
|
||||
doc_dir = "data/article_txt_got"
|
||||
s3_url = "https://s3.eu-central-1.amazonaws.com/deepset.ai-farm-qa/datasets/documents/wiki_gameofthrones_txt.zip"
|
||||
fetch_archive_from_http(url=s3_url, output_dir=doc_dir)
|
||||
|
||||
# Difference 1: Initialize a document store for Elasticsearch
|
||||
# This requires a running Elasticsearch instance. To run one locally you can execute:
|
||||
# docker run -d -p 9200:9200 -p 9300:9300 -e "discovery.type=single-node" elasticsearch:7.5.1
|
||||
document_store = ElasticsearchDocumentStore(host="localhost", username="", password="", index="document")
|
||||
|
||||
# Difference 2: Split docs into paragraphs before indexing (set split_paragraphs=True)
|
||||
write_documents_to_db(document_store=document_store, document_dir=doc_dir, clean_func=clean_wiki_text,
|
||||
only_empty_db=True, split_paragraphs=True)
|
||||
|
||||
# Difference 3: Use the native Elasticsearch implementation of BM25 as a Retriever
|
||||
retriever = ElasticsearchRetriever(document_store=document_store)
|
||||
|
||||
# Init reader & and use Finder to get answer (same as in Tutorial 1)
|
||||
reader = TransformersReader(model="deepset/bert-base-cased-squad2",tokenizer="deepset/bert-base-cased-squad2",use_gpu=-1)
|
||||
finder = Finder(reader, retriever)
|
||||
prediction = finder.get_answers(question="Who is the father of Arya Stark?", top_k_retriever=10, top_k_reader=5)
|
||||
print_answers(prediction, details="minimal")
|
Loading…
x
Reference in New Issue
Block a user