Add top_k to SimilarityRanker (#6036)

This commit is contained in:
Vladimir Blagojevic 2023-10-12 13:52:01 +02:00 committed by GitHub
parent 4b8b6e9191
commit d51be9edac
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 59 additions and 8 deletions

View File

@ -1,6 +1,6 @@
import logging
from pathlib import Path
from typing import List, Union, Dict, Any
from typing import List, Union, Dict, Any, Optional
from haystack.preview import ComponentError, Document, component, default_from_dict, default_to_dict
from haystack.preview.lazy_imports import LazyImport
@ -34,17 +34,24 @@ class SimilarityRanker:
"""
def __init__(
self, model_name_or_path: Union[str, Path] = "cross-encoder/ms-marco-MiniLM-L-6-v2", device: str = "cpu"
self,
model_name_or_path: Union[str, Path] = "cross-encoder/ms-marco-MiniLM-L-6-v2",
top_k: int = 10,
device: str = "cpu",
):
"""
Creates an instance of SimilarityRanker.
:param model_name_or_path: Path to a pre-trained sentence-transformers model.
:param top_k: The maximum number of documents to return per query.
:param device: torch device (for example, cuda:0, cpu, mps) to limit model inference to a specific device.
"""
torch_and_transformers_import.check()
self.model_name_or_path = model_name_or_path
if top_k <= 0:
raise ValueError(f"top_k must be > 0, but got {top_k}")
self.top_k = top_k
self.device = device
self.model = None
self.tokenizer = None
@ -63,7 +70,7 @@ class SimilarityRanker:
"""
Serialize this component to a dictionary.
"""
return default_to_dict(self, device=self.device, model_name_or_path=self.model_name_or_path)
return default_to_dict(self, top_k=self.top_k, device=self.device, model_name_or_path=self.model_name_or_path)
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "SimilarityRanker":
@ -73,17 +80,24 @@ class SimilarityRanker:
return default_from_dict(cls, data)
@component.output_types(documents=List[Document])
def run(self, query: str, documents: List[Document]):
def run(self, query: str, documents: List[Document], top_k: Optional[int] = None):
"""
Returns a list of documents ranked by their similarity to the given query
:param query: Query string.
:param documents: List of Documents.
:param top_k: The maximum number of documents to return.
:return: List of Documents sorted by (desc.) similarity with the query.
"""
if not documents:
return {"documents": []}
if top_k is None:
top_k = self.top_k
elif top_k <= 0:
raise ValueError(f"top_k must be > 0, but got {top_k}")
# If a model path is provided but the model isn't loaded
if self.model_name_or_path and not self.model:
raise ComponentError(
@ -105,4 +119,4 @@ class SimilarityRanker:
i = sorted_index_tensor.item()
documents[i].score = similarity_scores[i].item()
ranked_docs.append(documents[i])
return {"documents": ranked_docs}
return {"documents": ranked_docs[:top_k]}

View File

@ -11,7 +11,11 @@ class TestSimilarityRanker:
data = component.to_dict()
assert data == {
"type": "SimilarityRanker",
"init_parameters": {"device": "cpu", "model_name_or_path": "cross-encoder/ms-marco-MiniLM-L-6-v2"},
"init_parameters": {
"device": "cpu",
"top_k": 10,
"model_name_or_path": "cross-encoder/ms-marco-MiniLM-L-6-v2",
},
}
@pytest.mark.unit
@ -20,14 +24,22 @@ class TestSimilarityRanker:
data = component.to_dict()
assert data == {
"type": "SimilarityRanker",
"init_parameters": {"device": "cpu", "model_name_or_path": "cross-encoder/ms-marco-MiniLM-L-6-v2"},
"init_parameters": {
"device": "cpu",
"top_k": 10,
"model_name_or_path": "cross-encoder/ms-marco-MiniLM-L-6-v2",
},
}
@pytest.mark.integration
def test_from_dict(self):
data = {
"type": "SimilarityRanker",
"init_parameters": {"device": "cpu", "model_name_or_path": "cross-encoder/ms-marco-MiniLM-L-6-v2"},
"init_parameters": {
"device": "cpu",
"top_k": 10,
"model_name_or_path": "cross-encoder/ms-marco-MiniLM-L-6-v2",
},
}
component = SimilarityRanker.from_dict(data)
assert component.model_name_or_path == "cross-encoder/ms-marco-MiniLM-L-6-v2"
@ -72,3 +84,28 @@ class TestSimilarityRanker:
with pytest.raises(ComponentError):
sampler.run(query="query", documents=[Document(text="document")])
@pytest.mark.integration
@pytest.mark.parametrize(
"query,docs_before_texts,expected_first_text",
[
("City in Bosnia and Herzegovina", ["Berlin", "Belgrade", "Sarajevo"], "Sarajevo"),
("Machine learning", ["Python", "Bakery in Paris", "Tesla Giga Berlin"], "Python"),
("Cubist movement", ["Nirvana", "Pablo Picasso", "Coffee"], "Pablo Picasso"),
],
)
def test_run_top_k(self, query, docs_before_texts, expected_first_text):
"""
Test if the component ranks documents correctly with a custom top_k.
"""
ranker = SimilarityRanker(model_name_or_path="cross-encoder/ms-marco-MiniLM-L-6-v2", top_k=2)
ranker.warm_up()
docs_before = [Document(text=text) for text in docs_before_texts]
output = ranker.run(query=query, documents=docs_before)
docs_after = output["documents"]
assert len(docs_after) == 2
assert docs_after[0].text == expected_first_text
sorted_scores = sorted([doc.score for doc in docs_after], reverse=True)
assert [doc.score for doc in docs_after] == sorted_scores