mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-11-15 17:43:55 +00:00
Fix faiss test tolerance
This commit is contained in:
parent
7fdb85d63a
commit
d69133966d
@ -28,7 +28,7 @@ def test_faiss_write_docs(document_store, index_buffer_size):
|
|||||||
original_doc = [d for d in documents if d["text"] == doc.text][0]
|
original_doc = [d for d in documents if d["text"] == doc.text][0]
|
||||||
stored_emb = document_store.faiss_index.reconstruct(int(doc.meta["vector_id"]))
|
stored_emb = document_store.faiss_index.reconstruct(int(doc.meta["vector_id"]))
|
||||||
# compare original input vec with stored one (ignore extra dim added by hnsw)
|
# compare original input vec with stored one (ignore extra dim added by hnsw)
|
||||||
assert np.allclose(original_doc["embedding"], stored_emb[:-1])
|
assert np.allclose(original_doc["embedding"], stored_emb[:-1], rtol=0.0001)
|
||||||
|
|
||||||
# test insertion of documents in an existing index fails
|
# test insertion of documents in an existing index fails
|
||||||
with pytest.raises(Exception):
|
with pytest.raises(Exception):
|
||||||
@ -80,6 +80,6 @@ def test_faiss_update_docs(document_store, index_buffer_size):
|
|||||||
updated_embedding = retriever.embed_passages([Document.from_dict(original_doc)])
|
updated_embedding = retriever.embed_passages([Document.from_dict(original_doc)])
|
||||||
stored_emb = document_store.faiss_index.reconstruct(int(doc.meta["vector_id"]))
|
stored_emb = document_store.faiss_index.reconstruct(int(doc.meta["vector_id"]))
|
||||||
# compare original input vec with stored one (ignore extra dim added by hnsw)
|
# compare original input vec with stored one (ignore extra dim added by hnsw)
|
||||||
assert np.allclose(updated_embedding, stored_emb[:-1])
|
assert np.allclose(updated_embedding, stored_emb[:-1], rtol=0.0001)
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user