mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-10-28 00:08:41 +00:00
Fix tests
This commit is contained in:
parent
ba7178be7f
commit
d804861fb2
@ -1,81 +0,0 @@
|
|||||||
import logging
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
from haystack.modeling.data_handler.data_silo import DataSilo
|
|
||||||
from haystack.modeling.data_handler.processor import SquadProcessor
|
|
||||||
from haystack.modeling.model.adaptive_model import AdaptiveModel
|
|
||||||
from haystack.modeling.model.language_model import LanguageModel
|
|
||||||
from haystack.modeling.model.optimization import initialize_optimizer
|
|
||||||
from haystack.modeling.model.prediction_head import QuestionAnsweringHead
|
|
||||||
from haystack.modeling.model.tokenization import Tokenizer
|
|
||||||
from haystack.modeling.training.base import Trainer
|
|
||||||
from haystack.modeling.utils import set_all_seeds, initialize_device_settings
|
|
||||||
|
|
||||||
|
|
||||||
def test_training(caplog=None):
|
|
||||||
if caplog:
|
|
||||||
caplog.set_level(logging.CRITICAL)
|
|
||||||
|
|
||||||
set_all_seeds(seed=42)
|
|
||||||
device, n_gpu = initialize_device_settings(use_cuda=False)
|
|
||||||
batch_size = 2
|
|
||||||
n_epochs = 1
|
|
||||||
evaluate_every = 4
|
|
||||||
base_LM_model = "distilbert-base-uncased"
|
|
||||||
|
|
||||||
tokenizer = Tokenizer.load(
|
|
||||||
pretrained_model_name_or_path=base_LM_model,
|
|
||||||
do_lower_case=True,
|
|
||||||
use_fast=True # TODO parametrize this to test slow as well
|
|
||||||
)
|
|
||||||
label_list = ["start_token", "end_token"]
|
|
||||||
processor = SquadProcessor(
|
|
||||||
tokenizer=tokenizer,
|
|
||||||
max_seq_len=256,
|
|
||||||
doc_stride=10,
|
|
||||||
max_query_length=6,
|
|
||||||
train_filename="train-sample.json",
|
|
||||||
dev_filename="dev-sample.json",
|
|
||||||
test_filename=None,
|
|
||||||
data_dir=Path("samples/qa"),
|
|
||||||
label_list=label_list,
|
|
||||||
metric="squad"
|
|
||||||
)
|
|
||||||
|
|
||||||
data_silo = DataSilo(processor=processor, batch_size=batch_size, max_processes=1)
|
|
||||||
language_model = LanguageModel.load(base_LM_model)
|
|
||||||
prediction_head = QuestionAnsweringHead()
|
|
||||||
model = AdaptiveModel(
|
|
||||||
language_model=language_model,
|
|
||||||
prediction_heads=[prediction_head],
|
|
||||||
embeds_dropout_prob=0.1,
|
|
||||||
lm_output_types=["per_token"],
|
|
||||||
device=device,
|
|
||||||
)
|
|
||||||
|
|
||||||
model, optimizer, lr_schedule = initialize_optimizer(
|
|
||||||
model=model,
|
|
||||||
learning_rate=2e-5,
|
|
||||||
# optimizer_opts={'name': 'AdamW', 'lr': 2E-05},
|
|
||||||
n_batches=len(data_silo.loaders["train"]),
|
|
||||||
n_epochs=n_epochs,
|
|
||||||
device=device
|
|
||||||
)
|
|
||||||
trainer = Trainer(
|
|
||||||
model=model,
|
|
||||||
optimizer=optimizer,
|
|
||||||
data_silo=data_silo,
|
|
||||||
epochs=n_epochs,
|
|
||||||
n_gpu=n_gpu,
|
|
||||||
lr_schedule=lr_schedule,
|
|
||||||
evaluate_every=evaluate_every,
|
|
||||||
device=device
|
|
||||||
)
|
|
||||||
trainer.train()
|
|
||||||
|
|
||||||
assert type(model) == AdaptiveModel
|
|
||||||
assert type(processor) == SquadProcessor
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
test_training()
|
|
||||||
Loading…
x
Reference in New Issue
Block a user