Fix tests

This commit is contained in:
Timo Moeller 2021-09-13 20:00:22 +02:00
parent ba7178be7f
commit d804861fb2

View File

@ -1,81 +0,0 @@
import logging
from pathlib import Path
from haystack.modeling.data_handler.data_silo import DataSilo
from haystack.modeling.data_handler.processor import SquadProcessor
from haystack.modeling.model.adaptive_model import AdaptiveModel
from haystack.modeling.model.language_model import LanguageModel
from haystack.modeling.model.optimization import initialize_optimizer
from haystack.modeling.model.prediction_head import QuestionAnsweringHead
from haystack.modeling.model.tokenization import Tokenizer
from haystack.modeling.training.base import Trainer
from haystack.modeling.utils import set_all_seeds, initialize_device_settings
def test_training(caplog=None):
if caplog:
caplog.set_level(logging.CRITICAL)
set_all_seeds(seed=42)
device, n_gpu = initialize_device_settings(use_cuda=False)
batch_size = 2
n_epochs = 1
evaluate_every = 4
base_LM_model = "distilbert-base-uncased"
tokenizer = Tokenizer.load(
pretrained_model_name_or_path=base_LM_model,
do_lower_case=True,
use_fast=True # TODO parametrize this to test slow as well
)
label_list = ["start_token", "end_token"]
processor = SquadProcessor(
tokenizer=tokenizer,
max_seq_len=256,
doc_stride=10,
max_query_length=6,
train_filename="train-sample.json",
dev_filename="dev-sample.json",
test_filename=None,
data_dir=Path("samples/qa"),
label_list=label_list,
metric="squad"
)
data_silo = DataSilo(processor=processor, batch_size=batch_size, max_processes=1)
language_model = LanguageModel.load(base_LM_model)
prediction_head = QuestionAnsweringHead()
model = AdaptiveModel(
language_model=language_model,
prediction_heads=[prediction_head],
embeds_dropout_prob=0.1,
lm_output_types=["per_token"],
device=device,
)
model, optimizer, lr_schedule = initialize_optimizer(
model=model,
learning_rate=2e-5,
# optimizer_opts={'name': 'AdamW', 'lr': 2E-05},
n_batches=len(data_silo.loaders["train"]),
n_epochs=n_epochs,
device=device
)
trainer = Trainer(
model=model,
optimizer=optimizer,
data_silo=data_silo,
epochs=n_epochs,
n_gpu=n_gpu,
lr_schedule=lr_schedule,
evaluate_every=evaluate_every,
device=device
)
trainer.train()
assert type(model) == AdaptiveModel
assert type(processor) == SquadProcessor
if __name__ == "__main__":
test_training()