mirror of
https://github.com/deepset-ai/haystack.git
synced 2026-01-03 10:38:13 +00:00
Update README.rst
This commit is contained in:
parent
97bbb4280c
commit
ebb9e99b6c
12
README.rst
12
README.rst
@ -133,9 +133,10 @@ ElasticsearchRetriever
|
||||
Scoring text similarity via sparse Bag-of-words representations are strong and well-established baselines in Information Retrieval.
|
||||
The default :code:`ElasticsearchRetriever` uses Elasticsearch's native scoring (BM25), but can be extended easily with custom queries or filtering.
|
||||
|
||||
Example::
|
||||
Example
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
retriever = ElasticsearchRetriever(document_store=document_store, custom_query=None)
|
||||
retriever.retrieve(query="Why did the revenue increase?", filters={"years": ["2019"], "company": ["Q1", "Q2"]})
|
||||
# returns: [Document, Document]
|
||||
@ -145,9 +146,10 @@ EmbeddingRetriever
|
||||
Using dense embeddings (i.e. vector representations) of texts is a powerful alternative to score similarity of texts.
|
||||
This retriever allows you to transform your query into an embedding using a model (e.g. Sentence-BERT) and find similar texts by using cosine similarity.
|
||||
|
||||
Example::
|
||||
Example
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
retriever = EmbeddingRetriever(document_store=document_store,
|
||||
embedding_model="deepset/sentence-bert",
|
||||
model_format="farm")
|
||||
@ -168,9 +170,10 @@ Both readers can load either a local model or any public model from `Hugging Fa
|
||||
FARMReader
|
||||
^^^^^^^^^^
|
||||
Implementing various QA models via the `FARM <https://github.com/deepset-ai/FARM>`_ Framework.
|
||||
Example::
|
||||
Example
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2",
|
||||
use_gpu=False, no_ans_boost=-10, context_window_size=500,
|
||||
top_k_per_candidate=3, top_k_per_sample=1,
|
||||
@ -194,9 +197,10 @@ TransformersReader
|
||||
^^^^^^^^^^^^^^^^^^
|
||||
Implementing various QA models via the :code:`pipeline` class of `Transformers <https://github.com/huggingface/transformers>`_ Framework.
|
||||
|
||||
Example::
|
||||
Example
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
reader = TransformersReader(model="distilbert-base-uncased-distilled-squad",
|
||||
tokenizer="distilbert-base-uncased",
|
||||
context_window_size=500,
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user