17 Commits

Author SHA1 Message Date
Malte Pietsch
a0921f0c35
Remove Finder (#1326)
* deprecate finder

* remove import

* add doc section for moving from finder to pipelines
2021-08-09 13:41:40 +02:00
Branden Chan
aa6f768efa
Prevent merge of same questions on different documents during evaluation (#1119)
* Fix duplicate question in Reader.eval()

* Add duplicate question support in document store

* Support duplicate questions in retriever eval

* Update tutorial

* Rename key_tuple

* Change error message

* Add warning when more than 6 labels

* Allow for label grouping options

* Add support for aggregating by label meta

* Satisfy mypy

* Fix duplicate question in Reader.eval()

* Add duplicate question support in document store

* Support duplicate questions in retriever eval

* Update tutorial

* Rename key_tuple

* Change error message

* Add warning when more than 6 labels

* Allow for label grouping options

* Add support for aggregating by label meta

* Satisfy mypy

* Make label field flexible, add docstrings

* Satisfy mypy

* Fix failing tests

* Adjust docstring

* Fix tutorial

Co-authored-by: Malte Pietsch <malte.pietsch@deepset.ai>
2021-06-02 12:09:03 +02:00
Julian Risch
84c34295a1
Re-ranking component for document search without QA (#1025)
* Adding ranker similar to retriever and reader

* Sort documents according to query-document similarity scores

* Reranking and model training runs for small example

* Added EvalRanker node

* Calculate recall@k in EvalRetriever and EvalRanker nodes

* Renaming EvalRetriever to EvalDocuments and EvalReader to EvalAnswers

* Added mean reciprocal rank as metric for EvalDocuments

* Fix bug that appeared when ranking documents with same score

* Remove commented code for unimplmented eval() of Ranker node

* Add documentation of k parameter in EvalDocuments

* Add Ranker docu and renaming top_k param
2021-05-31 15:31:36 +02:00
Julian Risch
bf4563e5d2
Filtering duplicate answers (#1021)
* Allow filtering of duplicate answers as implemented in FARM

* Changed default behavior to filtering exact duplicates

* Change expected test result due to filtering of duplicate answers by default

* Rounding expected test results for comparison with predictions
2021-05-03 17:18:10 +02:00
Branden Chan
d77152c469
WIP: Add evaluation nodes for Pipelines (#904)
* Add main eval fns

* WIP: make pipeline_eval.py run

* Fix typo

* Add support for no_answers

* Add latest docstring and tutorial changes

* Working pipeline eval

* Add timing of nodes

* Add latest docstring and tutorial changes

* Refactor and clean

* Update tutorial script

* Set default params

* Update tutorials

* Fix indent

* Add latest docstring and tutorial changes

* Address mypy issues

* Add test

* Fix mypy error

* Clear outputs

* Add doc strings

* Incorporate reviewer feedback

* Add latest docstring and tutorial changes

* Revert query counting

* Fix typo

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2021-04-01 17:35:18 +02:00
Branden Chan
f3a3b73d9b
Choose correct similarity fns during benchmark runs & re-run benchmarks (#773)
* Adapt to new dataset_from_dicts return signature

* rename fn

* Align similarity fn in benchmark doc store

* Better choice of similarity fn

* Increase postgres wait time

* Add more expected returned variables

* update benchmark results

* Fix typo

* update all benchmark runs

* multiply stats by 100

* Specify similarity fns for website

Co-authored-by: Malte Pietsch <malte.pietsch@deepset.ai>
2021-02-03 11:45:18 +01:00
Tanay Soni
337376c81d Add batch_size and generators to document stores. (#733)
* Add batch update of embeddings in document stores

* Resolve merge conflict

* Remove document ordering dependency in tests

* Adjust index buffer size for tests

* Adjust ES Scroll Slice

* Use generator for document store pagination

* Add pagination for InMemoryDocumentStore

* Fix missing index parameter in FAISS update_embeddings()

* Fix FAISS update_embeddings()

* Update FAISS tests

* Update eval tests

* Revert code formatting change

* Fix document count in FAISS update embeddings

* Fix vector_ids reset in SQLDocumentStore

* Update doctrings

* Update docstring
2021-01-21 16:00:08 +01:00
Timo Moeller
4803da009a
Using PreProcessor functions on eval data (#751)
* Add eval data splitting

* Adjust for split by passage, add test and test data, adjust docstrings, add max_docs to highler level fct
2021-01-20 14:40:10 +01:00
bogdankostic
7709b6cee0
Make batchwise adding of evaluation data possible (#717)
* Make batchwise adding of evaluation data possible

* Fix typos in docstrings

* Merge add_eval_data and add_eval_data_batchwise

* Improve import statements

* Move add_eval_data to BaseDocumentStore

* Add batch_size param to write_documents and write_labels in EsDocStore

* Adjust docstring

Co-authored-by: Malte Pietsch <malte.pietsch@deepset.ai>
2021-01-12 17:54:43 +01:00
bogdankostic
ffaa0249f7
Fix retriever evaluation metrics (#547)
* Add mean reciprocal rank and fix mean average precision

* Add mrr metric to docstring

* Fix mypy error
2020-11-05 13:34:47 +01:00
Lalit Pagaria
f13443054a
[RAG] Integrate "Retrieval-Augmented Generation" with Haystack (#484)
* Adding dummy generator implementation

* Adding tutorial to try the model

* Committing current non working code

* Committing current update where we need to call generate function directly and need to convert embedding to tensor way

* Addressing review comments.

* Refactoring finder, and implementing rag_generator class.

* Refined the implementation of RAGGenerator and now it is in clean shape

* Renaming RAGGenerator to RAGenerator

* Reverting change from finder.py and addressing review comments

* Remove support for RagSequenceForGeneration

* Utilizing embed_passage function from DensePassageRetriever

* Adding sample test data to verify generator output

* Updating testing script

* Updating testing script

* Fixing bug related to top_k

* Updating latest farm dependency

* Comment out farm dependency

* Reverting changes from TransformersReader

* Adding transformers dataset to compare transformers and haystack generator implementation

* Using generator_encoder instead of question_encoder to generate context_input_ids

* Adding workaround to install FARM dependency from master branch

* Removing unnecessary changes

* Fixing generator test

* Removing transformers datasets

* Fixing generator test

* Some cleanup and updating TODO comments

* Adding tutorial notebook

* Updating tutorials with comments

* Explicitly passing token model in RAG test

* Addressing review comments

* Fixing notebook

* Refactoring tests to reduce memory footprint

* Split generator tests in separate ci step and before running it reclaim memory by terminating containers

* Moving tika dependent test to separate dir

* Remove unwanted code

* Brining reader under session scope

* Farm is now session object hence restoring changes from default value

* Updating assert for pdf converter

* Dummy commit to trigger CI flow

* REducing memory footprint required for generator tests

* Fixing mypy issues

* Marking test with tika and elasticsearch markers. Reverting changes in CI and pytest splits

* reducing changes

* Fixing CI

* changing elastic search ci

* Fixing test error

* Disabling return of embedding

* Marking generator test as well

* Refactoring tutorials

* Increasing ES memory to 750M

* Trying another fix for ES CI

* Reverting CI changes

* Splitting tests in CI

* Generator and non-generator markers split

* Adding pytest.ini to add markers and enable strict-markers option

* Reducing elastic search container memory

* Simplifying generator test by using documents with embedding directly

* Bump up farm to 0.5.0
2020-10-30 18:06:02 +01:00
Tanay Soni
db4151bbc0
Fix scoring in Elasticsearch for dot product (#517) 2020-10-23 17:50:49 +02:00
Lalit Pagaria
2e9f3c1512
Fix update_embeddings function in FAISSDocumentStore and add retriever fixture in tests (#481)
* 1. Prevent update_embeddings function in FAISSDocumentStore to set faiss_index as None when document store does not have any docs.

2. cleaning up tests by adding fixture for retriever.

* TfidfRetriever need document store with documents during initialization as it call fit() function in constructor so fixing it by checking self.paragraphs of None

* Fix naming of retriever's fixture (embedded to embedding and tfid to tfidf)
2020-10-14 16:15:04 +02:00
Malte Pietsch
9727829cc6
Rename and restructure modules (database, indexing, schemas) (#379)
* rename database to documentstore

* move document, label, multilabel to haystack/schema.py

* rename documentstore -> document_store

* split indexing modules -> file_converter + preprocessor

* fix order of imports

* Update tutorial notebooks

* fix torch version in tutorial 4
2020-09-16 18:33:23 +02:00
brandenchan
cca8676f90 More robust eval 2020-08-26 12:01:59 +02:00
bogdankostic
5186d2d235
Batch prediction in evaluation (#137)
* Add Batch evaluation

* Separate evaluation methods

* Clean calculation of eval metrics

* Adapt eval to Label objects

* Fix format of no_answer

* Adapt to MultiLabel

* Add tests
2020-08-10 19:30:31 +02:00
Malte Pietsch
29a15c0d59
Add eval for Dense Passage Retriever & Refactor handling of labels/feedback (#243) 2020-07-31 11:34:06 +02:00