from pathlib import Path from haystack.document_stores import InMemoryDocumentStore from haystack.pipeline_utils import build_indexing_pipeline # We support many different databases. Here we load a simple and lightweight in-memory document store. document_store = InMemoryDocumentStore() # Let's now build indexing pipeline that indexes PDFs and text files from a test folder. indexing_pipeline = build_indexing_pipeline( document_store=document_store, embedding_model="sentence-transformers/all-mpnet-base-v2" ) result = indexing_pipeline.run(files=list(Path("../../test/test_files").iterdir())) print(result)