--- title: "PgvectorDocumentStore" id: pgvectordocumentstore slug: "/pgvectordocumentstore" description: "" --- # PgvectorDocumentStore | | | | :------------ | :------------------------------------------------------------------------------------------ | | API reference | [Pgvector](/reference/integrations-pgvector) | | GitHub link | https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/pgvector/ | Pgvector is an extension for PostgreSQL that enhances its capabilities with vector similarity search. It builds upon the classic features of PostgreSQL, such as ACID compliance and point-in-time recovery, and introduces the ability to perform exact and approximate nearest neighbor search using vectors. For more information, see the [pgvector repository](https://github.com/pgvector/pgvector). Pgvector Document Store supports embedding retrieval and metadata filtering. ## Installation To quickly set up a PostgreSQL database with pgvector, you can use Docker: ```shell docker run -d -p 5432:5432 -e POSTGRES_USER=postgres -e POSTGRES_PASSWORD=postgres -e POSTGRES_DB=postgres ankane/pgvector ``` For more information on installing pgvector, visit the [pgvector GitHub repository](https://github.com/pgvector/pgvector). To use pgvector with Haystack, install the `pgvector-haystack` integration: ```shell pip install pgvector-haystack ``` ## Usage Define the connection string to your PostgreSQL database in the `PG_CONN_STR` environment variable. For example: ```shell Shell export PG_CONN_STR="postgresql://postgres:postgres@localhost:5432/postgres" ``` ## Initialization Initialize a `PgvectorDocumentStore` object that’s connected to the PostgreSQL database and writes documents to it: ```python from haystack_integrations.document_stores.pgvector import PgvectorDocumentStore from haystack import Document document_store = PgvectorDocumentStore( embedding_dimension=768, vector_function="cosine_similarity", recreate_table=True, search_strategy="hnsw", ) document_store.write_documents([ Document(content="This is first", embedding=[0.1]*768), Document(content="This is second", embedding=[0.3]*768) ]) print(document_store.count_documents()) ``` To learn more about the initialization parameters, see our [API docs](/reference/integrations-pgvector#pgvectordocumentstore). To properly compute embeddings for your documents, you can use a Document Embedder (for instance, the [`SentenceTransformersDocumentEmbedder`](/docs/sentencetransformersdocumentembedder)). ### Supported Retrievers - [`PgvectorEmbeddingRetriever`](/docs/pgvectorembeddingretriever): An embedding-based Retriever that fetches documents from the Document Store based on a query embedding provided to the Retriever. - [`PgvectorKeywordRetriever`](/docs/pgvectorembeddingretriever): A keyword-based Retriever that fetches documents matching a query from the Pgvector Document Store.