---
title: "MistralDocumentEmbedder"
id: mistraldocumentembedder
slug: "/mistraldocumentembedder"
description: "This component computes the embeddings of a list of documents using the Mistral API and models."
---
# MistralDocumentEmbedder
This component computes the embeddings of a list of documents using the Mistral API and models.
| | |
| --- | --- |
| **Most common position in a pipeline** | Before a [`DocumentWriter`](../writers/documentwriter.mdx) in an indexing pipeline |
| **Mandatory init variables** | "api_key": The Mistral API key. Can be set with `MISTRAL_API_KEY` env var. |
| **Mandatory run variables** | “documents”: A list of documents to be embedded |
| **Output variables** | “documents”: A list of documents (enriched with embeddings)
“meta”: A dictionary of metadata strings |
| **API reference** | [Mistral](/reference/integrations-mistral) |
| **GitHub link** | https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/mistral |
This component should be used to embed a list of Documents. To embed a string, use the [`MistralTextEmbedder`](/docs/mistraltextembedder).
## Overview
`MistralDocumentEmbedder` computes the embeddings of a list of documents and stores the obtained vectors in the embedding field of each document. It uses the Mistral API and its embedding models.
The component currently supports the `mistral-embed` embedding model. The list of all supported models can be found in Mistral’s [embedding models documentation](https://docs.mistral.ai/platform/endpoints/#embedding-models).
To start using this integration with Haystack, install it with:
```shell
pip install mistral-haystack
```
`MistralDocumentEmbedder` needs a Mistral API key to work. It uses an `MISTRAL_API_KEY` environment variable by default. Otherwise, you can pass an API key at initialization with `api_key`:
```python
embedder = MistralDocumentEmbedder(api_key=Secret.from_token(""), model="mistral-embed")
```
## Usage
### On its own
Remember first to set the`MISTRAL_API_KEY` as an environment variable or pass it in directly.
Here is how you can use the component on its own:
```python
from haystack import Document
from haystack_integrations.components.embedders.mistral.document_embedder import MistralDocumentEmbedder
doc = Document(content="I love pizza!")
embedder = MistralDocumentEmbedder(api_key=Secret.from_token(""), model="mistral-embed")
result = embedder.run([doc])
print(result['documents'][0].embedding)
## [-0.453125, 1.2236328, 2.0058594, 0.67871094...]
```
### In a pipeline
Below is an example of the `MistralDocumentEmbedder` in an indexing pipeline. We are indexing the contents of a webpage into an `InMemoryDocumentStore`.
```python
from haystack import Pipeline
from haystack.components.converters import HTMLToDocument
from haystack.components.fetchers import LinkContentFetcher
from haystack.components.preprocessors import DocumentSplitter
from haystack.components.writers import DocumentWriter
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack_integrations.components.embedders.mistral.document_embedder import MistralDocumentEmbedder
document_store = InMemoryDocumentStore()
fetcher = LinkContentFetcher()
converter = HTMLToDocument()
chunker = DocumentSplitter()
embedder = MistralDocumentEmbedder()
writer = DocumentWriter(document_store=document_store)
indexing = Pipeline()
indexing.add_component(name="fetcher", instance=fetcher)
indexing.add_component(name="converter", instance=converter)
indexing.add_component(name="chunker", instance=chunker)
indexing.add_component(name="embedder", instance=embedder)
indexing.add_component(name="writer", instance=writer)
indexing.connect("fetcher", "converter")
indexing.connect("converter", "chunker")
indexing.connect("chunker", "embedder")
indexing.connect("embedder", "writer")
indexing.run(data={"fetcher": {"urls": ["https://mistral.ai/news/la-plateforme/"]}})
```