--- title: "NvidiaDocumentEmbedder" id: nvidiadocumentembedder slug: "/nvidiadocumentembedder" description: "This component computes the embeddings of a list of documents and stores the obtained vectors in the embedding field of each document." --- # NvidiaDocumentEmbedder This component computes the embeddings of a list of documents and stores the obtained vectors in the embedding field of each document. | | | | --- | --- | | **Most common position in a pipeline** | Before a [`DocumentWriter`](../writers/documentwriter.mdx) in an indexing pipeline | | **Mandatory init variables** | "api_key": API key for the NVIDIA NIM. Can be set with `NVIDIA_API_KEY` env var. | | **Mandatory run variables** | “documents”: A list of documents | | **Output variables** | “documents”: A list of documents (enriched with embeddings)

”meta”: A dictionary of metadata | | **API reference** | [Nvidia](/reference/integrations-nvidia) | | **GitHub link** | https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/nvidia | ## Overview `NvidiaDocumentEmbedder` enriches the metadata of documents with an embedding of their content. It can be used with self-hosted models with NVIDIA NIM or models hosted on the [NVIDIA API catalog](https://build.nvidia.com/explore/discover). To embed a string, use the [`NvidiaTextEmbedder`](/docs/nvidiatextembedder). ## Usage To start using `NvidiaDocumentEmbedder`, first, install the `nvidia-haystack` package: ```shell pip install nvidia-haystack ``` You can use the `NvidiaDocumentEmbedder` with all the embedder models available on the [NVIDIA API catalog](https://docs.api.nvidia.com/nim/reference) or using a model deployed with NVIDIA NIM. Follow the [Deploying Text Embedding Models](https://developer.nvidia.com/docs/nemo-microservices/embedding/source/deploy.html) guide to learn how to deploy the model you want on your infrastructure. ### On its own To use LLMs from the NVIDIA API catalog, you need to specify the correct `api_url` and your API key. You can get your API key directly from the [catalog website](https://build.nvidia.com/explore/discover). The `NvidiaDocumentEmbedder` needs an Nvidia API key to work. It uses the `NVIDIA_API_KEY` environment variable by default. Otherwise, you can pass an API key at initialization with `api_key`, as in the following example. ```python from haystack.utils.auth import Secret from haystack_integrations.components.embedders.nvidia import NvidiaDocumentEmbedder embedder = NvidiaDocumentEmbedder( model="nvidia/nv-embedqa-e5-v5", api_url="https://integrate.api.nvidia.com/v1", api_key=Secret.from_token(""), ) embedder.warm_up() result = embedder.run("A transformer is a deep learning architecture") print(result["embedding"]) print(result["meta"]) ``` To use a locally deployed model, you need to set the `api_url` to your localhost and unset your `api_key`. ```python from haystack_integrations.components.embedders.nvidia import NvidiaDocumentEmbedder embedder = NvidiaDocumentEmbedder( model="nvidia/nv-embedqa-e5-v5", api_url="http://0.0.0.0:9999/v1", api_key=None, ) embedder.warm_up() result = embedder.run("A transformer is a deep learning architecture") print(result["embedding"]) print(result["meta"]) ``` ### In a pipeline Here's an example of a RAG pipeline: ```python from haystack import Pipeline, Document from haystack.document_stores.in_memory import InMemoryDocumentStore from haystack_integrations.components.embedders.nvidia import NvidiaTextEmbedder, NvidiaDocumentEmbedder from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever document_store = InMemoryDocumentStore(embedding_similarity_function="cosine") documents = [Document(content="My name is Wolfgang and I live in Berlin"), Document(content="I saw a black horse running"), Document(content="Germany has many big cities")] indexing_pipeline = Pipeline() indexing_pipeline.add_component("embedder", NvidiaDocumentEmbedder( model="nvidia/nv-embedqa-e5-v5", api_url="https://integrate.api.nvidia.com/v1", api_key=Secret.from_token(""), )) indexing_pipeline.add_component("writer", DocumentWriter(document_store=document_store)) indexing_pipeline.connect("embedder", "writer") indexing_pipeline.run({"embedder": {"documents": documents}}) query_pipeline = Pipeline() query_pipeline.add_component("text_embedder", NvidiaTextEmbedder( model="nvidia/nv-embedqa-e5-v5", api_url="https://integrate.api.nvidia.com/v1", api_key=Secret.from_token(""), )) query_pipeline.add_component("retriever", InMemoryEmbeddingRetriever(document_store=document_store)) query_pipeline.connect("text_embedder.embedding", "retriever.query_embedding") query = "Who lives in Berlin?" result = query_pipeline.run({"text_embedder":{"text": query}}) print(result['retriever']['documents'][0]) ``` ## Additional References :cook: Cookbook: [Haystack RAG Pipeline with Self-Deployed AI models using NVIDIA NIMs](https://haystack.deepset.ai/cookbook/rag-with-nims)