--- title: "VertexAIDocumentEmbedder" id: vertexaidocumentembedder slug: "/vertexaidocumentembedder" description: "This component computes embeddings for documents using models through VertexAI Embeddings API." --- # VertexAIDocumentEmbedder This component computes embeddings for documents using models through VertexAI Embeddings API. :::warning Deprecation Notice This integration uses the deprecated google-generativeai SDK, which will lose support after August 2025. We recommend switching to the new [GoogleGenAIDocumentEmbedder](googlegenaidocumentembedder.mdx) integration instead. ::: | | | | -------------------------------------- | ----------------------------------------------------------------------------------------------- | | **Most common position in a pipeline** | Before a [DocumentWriter](../writers/documentwriter.mdx) in an indexing pipeline | | **Mandatory init variables** | "model": The model used through the VertexAI Embeddings API | | **Mandatory run variables** | “documents”: A list of documents to be embedded | | **Output variables** | “documents”: A list of documents enriched with embeddings | | **API reference** | [Google Vertex](/reference/integrations-google-vertex) | | **GitHub link** | https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/google_vertex | `VertexAIDocumentEmbedder` enriches the metadata of documents with an embedding of their content. To embed a string, use the [`VertexAITextEmbedder`](doc:vertexaitextembedder). To use the `VertexAIDocumentEmbedder`, initialize it with: - `model`: The supported models are: - "text-embedding-004" - "text-embedding-005" - "textembedding-gecko-multilingual@001" - "text-multilingual-embedding-002" - "text-embedding-large-exp-03-07" - `task_type`: "RETRIEVAL_DOCUMENT” is the default. You can find all task types in the official [Google documentation](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/text-embeddings-api#tasktype). ### Authentication `VertexAIDocumentEmbedder` uses Google Cloud Application Default Credentials (ADCs) for authentication. For more information on how to set up ADCs, see the [official documentation](https://cloud.google.com/docs/authentication/provide-credentials-adc). Keep in mind that it’s essential to use an account that has access to a project authorized to use Google Vertex AI endpoints. You can find your project ID in the [GCP resource manager](https://console.cloud.google.com/cloud-resource-manager) or locally by running `gcloud projects list` in your terminal. For more info on the gcloud CLI, see its [official documentation](https://cloud.google.com/cli). ## Usage Install the `google-vertex-haystack` package to use this Embedder: ```shell pip install google-vertex-haystack ``` ### On its own ```python from haystack import Document from haystack_integrations.components.embedders.google_vertex import VertexAIDocumentEmbedder doc = Document(content="I love pizza!") document_embedder = VertexAIDocumentEmbedder(model="text-embedding-005") result = document_embedder.run([doc]) print(result['documents'][0].embedding) ## [-0.044606007635593414, 0.02857724390923977, -0.03549133986234665, ``` ### In a pipeline ```python from haystack import Document from haystack import Pipeline from haystack.document_stores.in_memory import InMemoryDocumentStore from haystack_integrations.components.embedders.google_vertex import VertexAITextEmbedder from haystack_integrations.components.embedders.google_vertex import VertexAIDocumentEmbedder from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever document_store = InMemoryDocumentStore(embedding_similarity_function="cosine") documents = [Document(content="My name is Wolfgang and I live in Berlin"), Document(content="I saw a black horse running"), Document(content="Germany has many big cities")] document_embedder = VertexAIDocumentEmbedder(model="text-embedding-005") documents_with_embeddings = document_embedder.run(documents)['documents'] document_store.write_documents(documents_with_embeddings) query_pipeline = Pipeline() query_pipeline.add_component("text_embedder", VertexAITextEmbedder(model="text-embedding-005")) query_pipeline.add_component("retriever", InMemoryEmbeddingRetriever(document_store=document_store)) query_pipeline.connect("text_embedder.embedding", "retriever.query_embedding") query = "Who lives in Berlin?" result = query_pipeline.run({"text_embedder":{"text": query}}) print(result['retriever']['documents'][0]) ## Document(id=..., content: 'My name is Wolfgang and I live in Berlin') ```