import json import logging import time from datetime import datetime from typing import List, Dict, Optional import elasticapm from fastapi import APIRouter from fastapi import HTTPException from pydantic import BaseModel from haystack import Finder from rest_api.config import DB_HOST, DB_PORT, DB_USER, DB_PW, DB_INDEX, ES_CONN_SCHEME, TEXT_FIELD_NAME, SEARCH_FIELD_NAME, \ EMBEDDING_DIM, EMBEDDING_FIELD_NAME, EXCLUDE_META_DATA_FIELDS, RETRIEVER_TYPE, EMBEDDING_MODEL_PATH, USE_GPU, READER_MODEL_PATH, \ BATCHSIZE, CONTEXT_WINDOW_SIZE, TOP_K_PER_CANDIDATE, NO_ANS_BOOST, MAX_PROCESSES, MAX_SEQ_LEN, DOC_STRIDE, \ DEFAULT_TOP_K_READER, DEFAULT_TOP_K_RETRIEVER, CONCURRENT_REQUEST_PER_WORKER, FAQ_QUESTION_FIELD_NAME, \ EMBEDDING_MODEL_FORMAT, READER_TYPE, READER_TOKENIZER, GPU_NUMBER, NAME_FIELD_NAME from rest_api.controller.utils import RequestLimiter from haystack.document_store.elasticsearch import ElasticsearchDocumentStore from haystack.reader.farm import FARMReader from haystack.reader.transformers import TransformersReader from haystack.retriever.base import BaseRetriever from haystack.retriever.sparse import ElasticsearchRetriever, ElasticsearchFilterOnlyRetriever from haystack.retriever.dense import EmbeddingRetriever logger = logging.getLogger(__name__) router = APIRouter() # Init global components: DocumentStore, Retriever, Reader, Finder document_store = ElasticsearchDocumentStore( host=DB_HOST, port=DB_PORT, username=DB_USER, password=DB_PW, index=DB_INDEX, scheme=ES_CONN_SCHEME, ca_certs=False, verify_certs=False, text_field=TEXT_FIELD_NAME, name_field=NAME_FIELD_NAME, search_fields=SEARCH_FIELD_NAME, embedding_dim=EMBEDDING_DIM, embedding_field=EMBEDDING_FIELD_NAME, excluded_meta_data=EXCLUDE_META_DATA_FIELDS, # type: ignore faq_question_field=FAQ_QUESTION_FIELD_NAME, ) if RETRIEVER_TYPE == "EmbeddingRetriever": retriever = EmbeddingRetriever( document_store=document_store, embedding_model=EMBEDDING_MODEL_PATH, model_format=EMBEDDING_MODEL_FORMAT, use_gpu=USE_GPU ) # type: BaseRetriever elif RETRIEVER_TYPE == "ElasticsearchRetriever": retriever = ElasticsearchRetriever(document_store=document_store) elif RETRIEVER_TYPE is None or RETRIEVER_TYPE == "ElasticsearchFilterOnlyRetriever": retriever = ElasticsearchFilterOnlyRetriever(document_store=document_store) else: raise ValueError(f"Could not load Retriever of type '{RETRIEVER_TYPE}'. " f"Please adjust RETRIEVER_TYPE to one of: " f"'EmbeddingRetriever', 'ElasticsearchRetriever', 'ElasticsearchFilterOnlyRetriever', None" f"OR modify rest_api/search.py to support your retriever" ) if READER_MODEL_PATH: # for extractive doc-qa if READER_TYPE == "TransformersReader": use_gpu = -1 if not USE_GPU else GPU_NUMBER reader = TransformersReader( model=str(READER_MODEL_PATH), use_gpu=use_gpu, context_window_size=CONTEXT_WINDOW_SIZE, tokenizer=str(READER_TOKENIZER) ) # type: Optional[FARMReader] elif READER_TYPE == "FARMReader": reader = FARMReader( model_name_or_path=str(READER_MODEL_PATH), batch_size=BATCHSIZE, use_gpu=USE_GPU, context_window_size=CONTEXT_WINDOW_SIZE, top_k_per_candidate=TOP_K_PER_CANDIDATE, no_ans_boost=NO_ANS_BOOST, num_processes=MAX_PROCESSES, max_seq_len=MAX_SEQ_LEN, doc_stride=DOC_STRIDE, ) # type: Optional[FARMReader] else: raise ValueError(f"Could not load Reader of type '{READER_TYPE}'. " f"Please adjust READER_TYPE to one of: " f"'FARMReader', 'TransformersReader', None" ) else: reader = None # don't need one for pure FAQ matching FINDERS = {1: Finder(reader=reader, retriever=retriever)} ############################################# # Data schema for request & response ############################################# class Question(BaseModel): questions: List[str] filters: Optional[Dict[str, str]] = None top_k_reader: int = DEFAULT_TOP_K_READER top_k_retriever: int = DEFAULT_TOP_K_RETRIEVER class Answer(BaseModel): answer: Optional[str] question: Optional[str] score: Optional[float] = None probability: Optional[float] = None context: Optional[str] offset_start: int offset_end: int offset_start_in_doc: Optional[int] offset_end_in_doc: Optional[int] document_id: Optional[str] = None meta: Optional[Dict[str, str]] class AnswersToIndividualQuestion(BaseModel): question: str answers: List[Optional[Answer]] class Answers(BaseModel): results: List[AnswersToIndividualQuestion] ############################################# # Endpoints ############################################# doc_qa_limiter = RequestLimiter(CONCURRENT_REQUEST_PER_WORKER) @router.post("/models/{model_id}/doc-qa", response_model=Answers, response_model_exclude_unset=True) def doc_qa(model_id: int, request: Question): with doc_qa_limiter.run(): start_time = time.time() finder = FINDERS.get(model_id, None) if not finder: raise HTTPException( status_code=404, detail=f"Couldn't get Finder with ID {model_id}. Available IDs: {list(FINDERS.keys())}" ) results = [] for question in request.questions: if request.filters: # put filter values into a list and remove filters with null value filters = {key: [value] for key, value in request.filters.items() if value is not None} logger.info(f" [{datetime.now()}] Request: {request}") else: filters = {} result = finder.get_answers( question=question, top_k_retriever=request.top_k_retriever, top_k_reader=request.top_k_reader, filters=filters, ) results.append(result) elasticapm.set_custom_context({"results": results}) end_time = time.time() logger.info(json.dumps({"request": request.dict(), "results": results, "time": f"{(end_time - start_time):.2f}"})) return {"results": results} @router.post("/models/{model_id}/faq-qa", response_model=Answers, response_model_exclude_unset=True) def faq_qa(model_id: int, request: Question): finder = FINDERS.get(model_id, None) if not finder: raise HTTPException( status_code=404, detail=f"Couldn't get Finder with ID {model_id}. Available IDs: {list(FINDERS.keys())}" ) results = [] for question in request.questions: if request.filters: # put filter values into a list and remove filters with null value filters = {key: [value] for key, value in request.filters.items() if value is not None} logger.info(f" [{datetime.now()}] Request: {request}") else: filters = {} result = finder.get_answers_via_similar_questions( question=question, top_k_retriever=request.top_k_retriever, filters=filters, ) results.append(result) elasticapm.set_custom_context({"results": results}) logger.info(json.dumps({"request": request.dict(), "results": results})) return {"results": results}