import os import sys import streamlit as st from utils import retrieve_doc from utils import feedback_doc from annotated_text import annotated_text import pandas as pd # streamlit does not support any states out of the box. On every button click, streamlit reload the whole page # and every value gets lost. To keep track of our feedback state we use the official streamlit gist mentioned # here https://gist.github.com/tvst/036da038ab3e999a64497f42de966a92 import SessionState def annotate_answer(answer, context): start_idx = context.find(answer) end_idx = start_idx+len(answer) annotated_text(context[:start_idx],(answer,"ANSWER","#8ef"),context[end_idx:]) def random_questions(df): random_row = df.sample(1) random_question = random_row["Question Text"].values[0] random_answer = random_row["Answer"].values[0] return random_question, random_answer # Define state state_question = SessionState.get(random_question='Who is the father of Arya Starck?', random_answer='', next_question='false', run_query='false') # Initalize variables eval_mode = False random_question = "Who is the father of Arya Starck?" eval_labels = os.getenv("EVAL_FILE", "eval_labels_example.csv") # UI search bar and sidebar st.write("# Haystack Demo") st.sidebar.header("Options") top_k_reader = st.sidebar.slider("Max. number of answers",min_value=1,max_value=10,value=3,step=1) top_k_retriever = st.sidebar.slider("Max. number of documents from retriever",min_value=1,max_value=10,value=3,step=1) eval_mode = st.sidebar.checkbox("Evalution mode") debug = st.sidebar.checkbox("Show debug info") # load csv into pandas dataframe if eval_mode: try: df = pd.read_csv(eval_labels, sep=";") except Exception: sys.exit('The eval file was not found. Please check the README for more information.') if state_question and hasattr(state_question, 'next_question') and hasattr(state_question, 'random_question') and state_question.next_question: random_question = state_question.random_question random_answer = state_question.random_answer else: random_question, random_answer = random_questions(df) state_question.random_question = random_question state_question.random_answer = random_answer # Generate new random question if eval_mode: next_question = st.button("Load new question") if next_question: random_question, random_answer = random_questions(df) state_question.random_question = random_question state_question.random_answer = random_answer state_question.next_question = "true" state_question.run_query = "false" else: state_question.next_question = "false" # Search bar question = st.text_input("Please provide your query:",value=random_question) if state_question and state_question.run_query: run_query = state_question.run_query st.button("Run") else: run_query = st.button("Run") state_question.run_query = run_query raw_json_feedback = "" # Get results for query if run_query: with st.spinner("Performing neural search on documents... 🧠 \n " "Do you want to optimize speed or accuracy? \n" "Check out the docs: https://haystack.deepset.ai/docs/latest/optimizationmd "): results,raw_json = retrieve_doc(question,top_k_reader=top_k_reader,top_k_retriever=top_k_retriever) # Show if we use a question of the given set if question == random_question and eval_mode: st.write("## Correct answers:") random_answer st.write("## Retrieved answers:") # Make every button key unique count = 0 for result in results: annotate_answer(result['answer'],result['context']) '**Relevance:** ', result['relevance'] , '**Source:** ' , result['source'] if eval_mode: # Define columns for buttons button_col1, button_col2, button_col3, button_col4 = st.beta_columns([1,1,1,6]) if button_col1.button("👍", key=(result['answer'] + str(count)), help="Correct answer"): raw_json_feedback = feedback_doc(question,"true",result['document_id'],1,"true",result['answer'],result['offset_start_in_doc']) st.success('Thanks for your feedback') if button_col2.button("👎", key=(result['answer'] + str(count)), help="Wrong answer and wrong passage"): raw_json_feedback = feedback_doc(question,"false",result['document_id'],1,"false",result['answer'],result['offset_start_in_doc']) st.success('Thanks for your feedback!') if button_col3.button("👎👍", key=(result['answer'] + str(count)), help="Wrong answer, but correct passage"): raw_json_feedback = feedback_doc(question,"false",result['document_id'],1,"true",result['answer'],result['offset_start_in_doc']) st.success('Thanks for your feedback!') count+=1 st.write("___") if debug: st.subheader("REST API JSON response") st.write(raw_json)