from typing import List, Optional, Dict, Union, Any from abc import abstractmethod from pathlib import Path import langdetect from tqdm.auto import tqdm from haystack.nodes.base import BaseComponent from haystack.schema import Document # https://en.wikipedia.org/wiki/Ligature_(writing) KNOWN_LIGATURES = { # Latin "ff": "ff", "fi": "fi", "fl": "fl", "ffi": "ffi", "ffl": "ffl", "ſt": "ft", "st": "st", "DZ": "DZ", "Dz": "Dz", "dz": "dz", "DŽ": "DŽ", "Dž": "Dž", "dž": "dž", "Ꜩ": "Tz", "ꜩ": "tz", "🙰": "et", "℔": "lb", "ᵫ": "ue", "IJ": "IJ", "ij": "ij", # They are both capitalized together, so the "Ij" ligature doesn't exist "ꝏ": "oo", # Not the infinite sign but a double-o ligature: https://en.wikipedia.org/wiki/Ligature_(writing)#Massachusett_%EA%9D%8F # Armenian "ﬓ": "մն", "ﬔ": "մե", "ﬕ": "մի", "ﬖ": "վն", "ﬗ": "մխ", } class BaseConverter(BaseComponent): """ Base class for implementing file converts to transform input documents to text format for ingestion in DocumentStore. """ outgoing_edges = 1 def __init__( self, remove_numeric_tables: bool = False, valid_languages: Optional[List[str]] = None, id_hash_keys: Optional[List[str]] = None, progress_bar: bool = True, ): """ :param remove_numeric_tables: This option uses heuristics to remove numeric rows from the tables. The tabular structures in documents might be noise for the reader model if it does not have table parsing capability for finding answers. However, tables may also have long strings that could possible candidate for searching answers. The rows containing strings are thus retained in this option. :param valid_languages: validate languages from a list of languages specified in the ISO 639-1 (https://en.wikipedia.org/wiki/ISO_639-1) format. This option can be used to add test for encoding errors. If the extracted text is not one of the valid languages, then it might likely be encoding error resulting in garbled text. :param id_hash_keys: Generate the document id from a custom list of strings that refer to the document's attributes. If you want to ensure you don't have duplicate documents in your DocumentStore but texts are not unique, you can modify the metadata and pass e.g. `"meta"` to this field (e.g. [`"content"`, `"meta"`]). In this case the id will be generated by using the content and the defined metadata. :param progress_bar: Show a progress bar for the conversion. """ super().__init__() self.remove_numeric_tables = remove_numeric_tables self.valid_languages = valid_languages self.id_hash_keys = id_hash_keys self.progress_bar = progress_bar @abstractmethod def convert( self, file_path: Path, meta: Optional[Dict[str, Any]], remove_numeric_tables: Optional[bool] = None, valid_languages: Optional[List[str]] = None, encoding: Optional[str] = "UTF-8", id_hash_keys: Optional[List[str]] = None, ) -> List[Document]: """ Convert a file to a dictionary containing the text and any associated meta data. File converters may extract file meta like name or size. In addition to it, user supplied meta data like author, url, external IDs can be supplied as a dictionary. :param file_path: path of the file to convert :param meta: dictionary of meta data key-value pairs to append in the returned document. :param remove_numeric_tables: This option uses heuristics to remove numeric rows from the tables. The tabular structures in documents might be noise for the reader model if it does not have table parsing capability for finding answers. However, tables may also have long strings that could possible candidate for searching answers. The rows containing strings are thus retained in this option. :param valid_languages: validate languages from a list of languages specified in the ISO 639-1 (https://en.wikipedia.org/wiki/ISO_639-1) format. This option can be used to add test for encoding errors. If the extracted text is not one of the valid languages, then it might likely be encoding error resulting in garbled text. :param encoding: Select the file encoding (default is `UTF-8`) :param id_hash_keys: Generate the document id from a custom list of strings that refer to the document's attributes. If you want to ensure you don't have duplicate documents in your DocumentStore but texts are not unique, you can modify the metadata and pass e.g. `"meta"` to this field (e.g. [`"content"`, `"meta"`]). In this case the id will be generated by using the content and the defined metadata. """ pass def validate_language(self, text: str, valid_languages: Optional[List[str]] = None) -> bool: """ Validate if the language of the text is one of valid languages. """ if valid_languages is None: valid_languages = self.valid_languages if not valid_languages: return True try: lang = langdetect.detect(text) except langdetect.lang_detect_exception.LangDetectException: lang = None return lang in valid_languages def run( # type: ignore self, file_paths: Union[Path, List[Path]], meta: Optional[Union[Dict[str, str], List[Optional[Dict[str, str]]]]] = None, remove_numeric_tables: Optional[bool] = None, known_ligatures: Optional[Dict[str, str]] = None, valid_languages: Optional[List[str]] = None, encoding: Optional[str] = "UTF-8", id_hash_keys: Optional[List[str]] = None, ): """ Extract text from a file. :param file_paths: Path to the files you want to convert :param meta: Optional dictionary with metadata that shall be attached to all resulting documents. Can be any custom keys and values. :param remove_numeric_tables: This option uses heuristics to remove numeric rows from the tables. The tabular structures in documents might be noise for the reader model if it does not have table parsing capability for finding answers. However, tables may also have long strings that could possible candidate for searching answers. The rows containing strings are thus retained in this option. :param known_ligatures: Some converters tend to recognize clusters of letters as ligatures, such as "ff" (double f). Such ligatures however make text hard to compare with the content of other files, which are generally ligature free. Therefore we automatically find and replace the most common ligatures with their split counterparts. The default mapping is in `haystack.nodes.file_converter.base.KNOWN_LIGATURES`: it is rather biased towards Latin alphabeths but excludes all ligatures that are known to be used in IPA. If no value is provided, this default is created and used. You can use this parameter to provide your own set of ligatures to clean up from the documents. :param valid_languages: validate languages from a list of languages specified in the ISO 639-1 (https://en.wikipedia.org/wiki/ISO_639-1) format. This option can be used to add test for encoding errors. If the extracted text is not one of the valid languages, then it might likely be encoding error resulting in garbled text. :param encoding: Select the file encoding (default is `UTF-8`) :param id_hash_keys: Generate the document id from a custom list of strings that refer to the document's attributes. If you want to ensure you don't have duplicate documents in your DocumentStore but texts are not unique, you can modify the metadata and pass e.g. `"meta"` to this field (e.g. [`"content"`, `"meta"`]). In this case the id will be generated by using the content and the defined metadata. """ if known_ligatures is None: known_ligatures = KNOWN_LIGATURES if isinstance(file_paths, Path): file_paths = [file_paths] if isinstance(meta, dict) or meta is None: meta = [meta] * len(file_paths) documents: list = [] for file_path, file_meta in tqdm( zip(file_paths, meta), total=len(file_paths), disable=not self.progress_bar, desc="Converting files" ): for doc in self.convert( file_path=file_path, meta=file_meta, remove_numeric_tables=remove_numeric_tables, valid_languages=valid_languages, encoding=encoding, id_hash_keys=id_hash_keys, ): documents.append(doc) # Cleanup ligatures for document in documents: for ligature, letters in known_ligatures.items(): if document.content is not None: document.content = document.content.replace(ligature, letters) result = {"documents": documents} return result, "output_1" def run_batch( # type: ignore self, file_paths: Union[Path, List[Path]], meta: Optional[Union[Dict[str, str], List[Optional[Dict[str, str]]]]] = None, remove_numeric_tables: Optional[bool] = None, known_ligatures: Optional[Dict[str, str]] = None, valid_languages: Optional[List[str]] = None, encoding: Optional[str] = "UTF-8", id_hash_keys: Optional[List[str]] = None, ): return self.run( file_paths=file_paths, meta=meta, remove_numeric_tables=remove_numeric_tables, known_ligatures=known_ligatures, valid_languages=valid_languages, encoding=encoding, id_hash_keys=id_hash_keys, )