import logging import pandas as pd import pytest from haystack.schema import Document, Answer from haystack.pipelines.base import Pipeline @pytest.mark.parametrize("table_reader_and_param", ["tapas_small", "rci", "tapas_scored"], indirect=True) def test_table_reader(table_reader_and_param): table_reader, param = table_reader_and_param data = { "actors": ["brad pitt", "leonardo di caprio", "george clooney"], "age": ["58", "47", "60"], "number of movies": ["87", "53", "69"], "date of birth": ["18 december 1963", "11 november 1974", "6 may 1961"], } table = pd.DataFrame(data) data2 = { "actors": ["chris pratt", "gal gadot", "oprah winfrey"], "age": ["45", "36", "65"], "number of movies": ["49", "34", "5"], "date of birth": ["12 january 1975", "5 april 1980", "15 september 1960"], } table2 = pd.DataFrame(data2) query = "When was Di Caprio born?" prediction = table_reader.predict( query=query, documents=[Document(content=table, content_type="table"), Document(content=table2, content_type="table")], ) scores = {"tapas_small": 1.0, "rci": -6.5301, "tapas_scored": 0.50568} assert prediction["answers"][0].score == pytest.approx(scores[param], rel=1e-3) assert prediction["answers"][0].answer == "11 november 1974" assert prediction["answers"][0].offsets_in_context[0].start == 7 assert prediction["answers"][0].offsets_in_context[0].end == 8 predictions = { "tapas_small": {"answer": "5 april 1980", "start": 7, "end": 8, "score": 0.86314}, "rci": {"answer": "47", "start": 5, "end": 6, "score": -6.836}, "tapas_scored": {"answer": "brad pitt", "start": 0, "end": 1, "score": 0.49078}, } assert prediction["answers"][1].score == pytest.approx(predictions[param]["score"], rel=1e-3) assert prediction["answers"][1].answer == predictions[param]["answer"] assert prediction["answers"][1].offsets_in_context[0].start == predictions[param]["start"] assert prediction["answers"][1].offsets_in_context[0].end == predictions[param]["end"] @pytest.mark.parametrize("table_reader_and_param", ["tapas_small", "rci", "tapas_scored"], indirect=True) def test_table_reader_batch_single_query_single_doc_list(table_reader_and_param): table_reader, param = table_reader_and_param data = { "actors": ["brad pitt", "leonardo di caprio", "george clooney"], "age": ["58", "47", "60"], "number of movies": ["87", "53", "69"], "date of birth": ["18 december 1963", "11 november 1974", "6 may 1961"], } table = pd.DataFrame(data) query = "When was Di Caprio born?" prediction = table_reader.predict_batch(queries=[query], documents=[Document(content=table, content_type="table")]) # Expected output: List of lists of answers assert isinstance(prediction["answers"], list) assert isinstance(prediction["answers"][0], list) assert isinstance(prediction["answers"][0][0], Answer) assert len(prediction["answers"]) == 1 # Predictions for 5 docs @pytest.mark.parametrize("table_reader_and_param", ["tapas_small", "rci", "tapas_scored"], indirect=True) def test_table_reader_batch_single_query_multiple_doc_lists(table_reader_and_param): table_reader, param = table_reader_and_param data = { "actors": ["brad pitt", "leonardo di caprio", "george clooney"], "age": ["58", "47", "60"], "number of movies": ["87", "53", "69"], "date of birth": ["18 december 1963", "11 november 1974", "6 may 1961"], } table = pd.DataFrame(data) query = "When was Di Caprio born?" prediction = table_reader.predict_batch( queries=[query], documents=[[Document(content=table, content_type="table")]] ) # Expected output: List of lists of answers assert isinstance(prediction["answers"], list) assert isinstance(prediction["answers"][0], list) assert isinstance(prediction["answers"][0][0], Answer) assert len(prediction["answers"]) == 1 # Predictions for 1 collection of docs @pytest.mark.parametrize("table_reader_and_param", ["tapas_small", "rci", "tapas_scored"], indirect=True) def test_table_reader_batch_multiple_queries_single_doc_list(table_reader_and_param): table_reader, param = table_reader_and_param data = { "actors": ["brad pitt", "leonardo di caprio", "george clooney"], "age": ["58", "47", "60"], "number of movies": ["87", "53", "69"], "date of birth": ["18 december 1963", "11 november 1974", "6 may 1961"], } table = pd.DataFrame(data) query = "When was Di Caprio born?" prediction = table_reader.predict_batch( queries=[query, query], documents=[Document(content=table, content_type="table")] ) # Expected output: List of lists of lists of answers assert isinstance(prediction["answers"], list) assert isinstance(prediction["answers"][0], list) assert isinstance(prediction["answers"][0][0], list) assert isinstance(prediction["answers"][0][0][0], Answer) assert len(prediction["answers"]) == 2 # Predictions for 2 queries @pytest.mark.parametrize("table_reader_and_param", ["tapas_small", "rci", "tapas_scored"], indirect=True) def test_table_reader_batch_multiple_queries_multiple_doc_lists(table_reader_and_param): table_reader, param = table_reader_and_param data = { "actors": ["brad pitt", "leonardo di caprio", "george clooney"], "age": ["58", "47", "60"], "number of movies": ["87", "53", "69"], "date of birth": ["18 december 1963", "11 november 1974", "6 may 1961"], } table = pd.DataFrame(data) query = "When was Di Caprio born?" prediction = table_reader.predict_batch( queries=[query, query], documents=[[Document(content=table, content_type="table")], [Document(content=table, content_type="table")]], ) # Expected output: List of lists answers assert isinstance(prediction["answers"], list) assert isinstance(prediction["answers"][0], list) assert isinstance(prediction["answers"][0][0], Answer) assert len(prediction["answers"]) == 2 # Predictions for 2 collections of documents @pytest.mark.parametrize("table_reader_and_param", ["tapas_small", "rci", "tapas_scored"], indirect=True) def test_table_reader_in_pipeline(table_reader_and_param): table_reader, param = table_reader_and_param pipeline = Pipeline() pipeline.add_node(table_reader, "TableReader", ["Query"]) data = { "actors": ["brad pitt", "leonardo di caprio", "george clooney"], "age": ["58", "47", "60"], "number of movies": ["87", "53", "69"], "date of birth": ["18 december 1963", "11 november 1974", "6 may 1961"], } table = pd.DataFrame(data) query = "When was Di Caprio born?" prediction = pipeline.run(query=query, documents=[Document(content=table, content_type="table")]) assert prediction["answers"][0].answer == "11 november 1974" assert prediction["answers"][0].offsets_in_context[0].start == 7 assert prediction["answers"][0].offsets_in_context[0].end == 8 @pytest.mark.parametrize("table_reader_and_param", ["tapas_base"], indirect=True) def test_table_reader_aggregation(table_reader_and_param): table_reader, param = table_reader_and_param data = { "Mountain": ["Mount Everest", "K2", "Kangchenjunga", "Lhotse", "Makalu"], "Height": ["8848m", "8,611 m", "8 586m", "8 516 m", "8,485m"], } table = pd.DataFrame(data) query = "How tall are all mountains on average?" prediction = table_reader.predict(query=query, documents=[Document(content=table, content_type="table")]) assert prediction["answers"][0].score == pytest.approx(1.0) assert prediction["answers"][0].answer == "8609.2 m" assert prediction["answers"][0].meta["aggregation_operator"] == "AVERAGE" assert prediction["answers"][0].meta["answer_cells"] == ["8848m", "8,611 m", "8 586m", "8 516 m", "8,485m"] query = "How tall are all mountains together?" prediction = table_reader.predict(query=query, documents=[Document(content=table, content_type="table")]) assert prediction["answers"][0].score == pytest.approx(1.0) assert prediction["answers"][0].answer == "43046.0 m" assert prediction["answers"][0].meta["aggregation_operator"] == "SUM" assert prediction["answers"][0].meta["answer_cells"] == ["8848m", "8,611 m", "8 586m", "8 516 m", "8,485m"] @pytest.mark.parametrize("table_reader_and_param", ["tapas_small", "rci", "tapas_scored"], indirect=True) def test_table_without_rows(caplog, table_reader_and_param): table_reader, param = table_reader_and_param # empty DataFrame table = pd.DataFrame() document = Document(content=table, content_type="table", id="no_rows") with caplog.at_level(logging.WARNING): predictions = table_reader.predict(query="test", documents=[document]) assert "Skipping document with id 'no_rows'" in caplog.text assert len(predictions["answers"]) == 0 @pytest.mark.parametrize("table_reader_and_param", ["tapas_small", "rci", "tapas_scored"], indirect=True) def test_text_document(caplog, table_reader_and_param): table_reader, param = table_reader_and_param document = Document(content="text", id="text_doc") with caplog.at_level(logging.WARNING): predictions = table_reader.predict(query="test", documents=[document]) assert "Skipping document with id 'text_doc'" in caplog.text assert len(predictions["answers"]) == 0