---
title: "FastEmbed"
id: fastembed-embedders
description: "FastEmbed integration for Haystack"
slug: "/fastembed-embedders"
---
## Module haystack\_integrations.components.embedders.fastembed.fastembed\_document\_embedder
### FastembedDocumentEmbedder
FastembedDocumentEmbedder computes Document embeddings using Fastembed embedding models.
The embedding of each Document is stored in the `embedding` field of the Document.
Usage example:
```python
# To use this component, install the "fastembed-haystack" package.
# pip install fastembed-haystack
from haystack_integrations.components.embedders.fastembed import FastembedDocumentEmbedder
from haystack.dataclasses import Document
doc_embedder = FastembedDocumentEmbedder(
model="BAAI/bge-small-en-v1.5",
batch_size=256,
)
doc_embedder.warm_up()
# Text taken from PubMed QA Dataset (https://huggingface.co/datasets/pubmed_qa)
document_list = [
Document(
content=("Oxidative stress generated within inflammatory joints can produce autoimmune phenomena and joint "
"destruction. Radical species with oxidative activity, including reactive nitrogen species, "
"represent mediators of inflammation and cartilage damage."),
meta={
"pubid": "25,445,628",
"long_answer": "yes",
},
),
Document(
content=("Plasma levels of pancreatic polypeptide (PP) rise upon food intake. Although other pancreatic "
"islet hormones, such as insulin and glucagon, have been extensively investigated, PP secretion "
"and actions are still poorly understood."),
meta={
"pubid": "25,445,712",
"long_answer": "yes",
},
),
]
result = doc_embedder.run(document_list)
print(f"Document Text: {result['documents'][0].content}")
print(f"Document Embedding: {result['documents'][0].embedding}")
print(f"Embedding Dimension: {len(result['documents'][0].embedding)}")
```
#### FastembedDocumentEmbedder.\_\_init\_\_
```python
def __init__(model: str = "BAAI/bge-small-en-v1.5",
cache_dir: Optional[str] = None,
threads: Optional[int] = None,
prefix: str = "",
suffix: str = "",
batch_size: int = 256,
progress_bar: bool = True,
parallel: Optional[int] = None,
local_files_only: bool = False,
meta_fields_to_embed: Optional[List[str]] = None,
embedding_separator: str = "\n")
```
Create an FastembedDocumentEmbedder component.
**Arguments**:
- `model`: Local path or name of the model in Hugging Face's model hub,
such as `BAAI/bge-small-en-v1.5`.
- `cache_dir`: The path to the cache directory.
Can be set using the `FASTEMBED_CACHE_PATH` env variable.
Defaults to `fastembed_cache` in the system's temp directory.
- `threads`: The number of threads single onnxruntime session can use. Defaults to None.
- `prefix`: A string to add to the beginning of each text.
- `suffix`: A string to add to the end of each text.
- `batch_size`: Number of strings to encode at once.
- `progress_bar`: If `True`, displays progress bar during embedding.
- `parallel`: If > 1, data-parallel encoding will be used, recommended for offline encoding of large datasets.
If 0, use all available cores.
If None, don't use data-parallel processing, use default onnxruntime threading instead.
- `local_files_only`: If `True`, only use the model files in the `cache_dir`.
- `meta_fields_to_embed`: List of meta fields that should be embedded along with the Document content.
- `embedding_separator`: Separator used to concatenate the meta fields to the Document content.
#### FastembedDocumentEmbedder.to\_dict
```python
def to_dict() -> Dict[str, Any]
```
Serializes the component to a dictionary.
**Returns**:
Dictionary with serialized data.
#### FastembedDocumentEmbedder.warm\_up
```python
def warm_up()
```
Initializes the component.
#### FastembedDocumentEmbedder.run
```python
@component.output_types(documents=List[Document])
def run(documents: List[Document]) -> Dict[str, List[Document]]
```
Embeds a list of Documents.
**Arguments**:
- `documents`: List of Documents to embed.
**Returns**:
A dictionary with the following keys:
- `documents`: List of Documents with each Document's `embedding` field set to the computed embeddings.
## Module haystack\_integrations.components.embedders.fastembed.fastembed\_text\_embedder
### FastembedTextEmbedder
FastembedTextEmbedder computes string embedding using fastembed embedding models.
Usage example:
```python
from haystack_integrations.components.embedders.fastembed import FastembedTextEmbedder
text = ("It clearly says online this will work on a Mac OS system. "
"The disk comes and it does not, only Windows. Do Not order this if you have a Mac!!")
text_embedder = FastembedTextEmbedder(
model="BAAI/bge-small-en-v1.5"
)
text_embedder.warm_up()
embedding = text_embedder.run(text)["embedding"]
```
#### FastembedTextEmbedder.\_\_init\_\_
```python
def __init__(model: str = "BAAI/bge-small-en-v1.5",
cache_dir: Optional[str] = None,
threads: Optional[int] = None,
prefix: str = "",
suffix: str = "",
progress_bar: bool = True,
parallel: Optional[int] = None,
local_files_only: bool = False)
```
Create a FastembedTextEmbedder component.
**Arguments**:
- `model`: Local path or name of the model in Fastembed's model hub, such as `BAAI/bge-small-en-v1.5`
- `cache_dir`: The path to the cache directory.
Can be set using the `FASTEMBED_CACHE_PATH` env variable.
Defaults to `fastembed_cache` in the system's temp directory.
- `threads`: The number of threads single onnxruntime session can use. Defaults to None.
- `prefix`: A string to add to the beginning of each text.
- `suffix`: A string to add to the end of each text.
- `progress_bar`: If `True`, displays progress bar during embedding.
- `parallel`: If > 1, data-parallel encoding will be used, recommended for offline encoding of large datasets.
If 0, use all available cores.
If None, don't use data-parallel processing, use default onnxruntime threading instead.
- `local_files_only`: If `True`, only use the model files in the `cache_dir`.
#### FastembedTextEmbedder.to\_dict
```python
def to_dict() -> Dict[str, Any]
```
Serializes the component to a dictionary.
**Returns**:
Dictionary with serialized data.
#### FastembedTextEmbedder.warm\_up
```python
def warm_up()
```
Initializes the component.
#### FastembedTextEmbedder.run
```python
@component.output_types(embedding=List[float])
def run(text: str) -> Dict[str, List[float]]
```
Embeds text using the Fastembed model.
**Arguments**:
- `text`: A string to embed.
**Raises**:
- `TypeError`: If the input is not a string.
- `RuntimeError`: If the embedding model has not been loaded.
**Returns**:
A dictionary with the following keys:
- `embedding`: A list of floats representing the embedding of the input text.
## Module haystack\_integrations.components.embedders.fastembed.fastembed\_sparse\_document\_embedder
### FastembedSparseDocumentEmbedder
FastembedSparseDocumentEmbedder computes Document embeddings using Fastembed sparse models.
Usage example:
```python
from haystack_integrations.components.embedders.fastembed import FastembedSparseDocumentEmbedder
from haystack.dataclasses import Document
sparse_doc_embedder = FastembedSparseDocumentEmbedder(
model="prithivida/Splade_PP_en_v1",
batch_size=32,
)
sparse_doc_embedder.warm_up()
# Text taken from PubMed QA Dataset (https://huggingface.co/datasets/pubmed_qa)
document_list = [
Document(
content=("Oxidative stress generated within inflammatory joints can produce autoimmune phenomena and joint "
"destruction. Radical species with oxidative activity, including reactive nitrogen species, "
"represent mediators of inflammation and cartilage damage."),
meta={
"pubid": "25,445,628",
"long_answer": "yes",
},
),
Document(
content=("Plasma levels of pancreatic polypeptide (PP) rise upon food intake. Although other pancreatic "
"islet hormones, such as insulin and glucagon, have been extensively investigated, PP secretion "
"and actions are still poorly understood."),
meta={
"pubid": "25,445,712",
"long_answer": "yes",
},
),
]
result = sparse_doc_embedder.run(document_list)
print(f"Document Text: {result['documents'][0].content}")
print(f"Document Sparse Embedding: {result['documents'][0].sparse_embedding}")
print(f"Sparse Embedding Dimension: {len(result['documents'][0].sparse_embedding)}")
```
#### FastembedSparseDocumentEmbedder.\_\_init\_\_
```python
def __init__(model: str = "prithivida/Splade_PP_en_v1",
cache_dir: Optional[str] = None,
threads: Optional[int] = None,
batch_size: int = 32,
progress_bar: bool = True,
parallel: Optional[int] = None,
local_files_only: bool = False,
meta_fields_to_embed: Optional[List[str]] = None,
embedding_separator: str = "\n",
model_kwargs: Optional[Dict[str, Any]] = None)
```
Create an FastembedDocumentEmbedder component.
**Arguments**:
- `model`: Local path or name of the model in Hugging Face's model hub,
such as `prithivida/Splade_PP_en_v1`.
- `cache_dir`: The path to the cache directory.
Can be set using the `FASTEMBED_CACHE_PATH` env variable.
Defaults to `fastembed_cache` in the system's temp directory.
- `threads`: The number of threads single onnxruntime session can use.
- `batch_size`: Number of strings to encode at once.
- `progress_bar`: If `True`, displays progress bar during embedding.
- `parallel`: If > 1, data-parallel encoding will be used, recommended for offline encoding of large datasets.
If 0, use all available cores.
If None, don't use data-parallel processing, use default onnxruntime threading instead.
- `local_files_only`: If `True`, only use the model files in the `cache_dir`.
- `meta_fields_to_embed`: List of meta fields that should be embedded along with the Document content.
- `embedding_separator`: Separator used to concatenate the meta fields to the Document content.
- `model_kwargs`: Dictionary containing model parameters such as `k`, `b`, `avg_len`, `language`.
#### FastembedSparseDocumentEmbedder.to\_dict
```python
def to_dict() -> Dict[str, Any]
```
Serializes the component to a dictionary.
**Returns**:
Dictionary with serialized data.
#### FastembedSparseDocumentEmbedder.warm\_up
```python
def warm_up()
```
Initializes the component.
#### FastembedSparseDocumentEmbedder.run
```python
@component.output_types(documents=List[Document])
def run(documents: List[Document]) -> Dict[str, List[Document]]
```
Embeds a list of Documents.
**Arguments**:
- `documents`: List of Documents to embed.
**Returns**:
A dictionary with the following keys:
- `documents`: List of Documents with each Document's `sparse_embedding`
field set to the computed embeddings.
## Module haystack\_integrations.components.embedders.fastembed.fastembed\_sparse\_text\_embedder
### FastembedSparseTextEmbedder
FastembedSparseTextEmbedder computes string embedding using fastembed sparse models.
Usage example:
```python
from haystack_integrations.components.embedders.fastembed import FastembedSparseTextEmbedder
text = ("It clearly says online this will work on a Mac OS system. "
"The disk comes and it does not, only Windows. Do Not order this if you have a Mac!!")
sparse_text_embedder = FastembedSparseTextEmbedder(
model="prithivida/Splade_PP_en_v1"
)
sparse_text_embedder.warm_up()
sparse_embedding = sparse_text_embedder.run(text)["sparse_embedding"]
```
#### FastembedSparseTextEmbedder.\_\_init\_\_
```python
def __init__(model: str = "prithivida/Splade_PP_en_v1",
cache_dir: Optional[str] = None,
threads: Optional[int] = None,
progress_bar: bool = True,
parallel: Optional[int] = None,
local_files_only: bool = False,
model_kwargs: Optional[Dict[str, Any]] = None)
```
Create a FastembedSparseTextEmbedder component.
**Arguments**:
- `model`: Local path or name of the model in Fastembed's model hub, such as `prithivida/Splade_PP_en_v1`
- `cache_dir`: The path to the cache directory.
Can be set using the `FASTEMBED_CACHE_PATH` env variable.
Defaults to `fastembed_cache` in the system's temp directory.
- `threads`: The number of threads single onnxruntime session can use. Defaults to None.
- `progress_bar`: If `True`, displays progress bar during embedding.
- `parallel`: If > 1, data-parallel encoding will be used, recommended for offline encoding of large datasets.
If 0, use all available cores.
If None, don't use data-parallel processing, use default onnxruntime threading instead.
- `local_files_only`: If `True`, only use the model files in the `cache_dir`.
- `model_kwargs`: Dictionary containing model parameters such as `k`, `b`, `avg_len`, `language`.
#### FastembedSparseTextEmbedder.to\_dict
```python
def to_dict() -> Dict[str, Any]
```
Serializes the component to a dictionary.
**Returns**:
Dictionary with serialized data.
#### FastembedSparseTextEmbedder.warm\_up
```python
def warm_up()
```
Initializes the component.
#### FastembedSparseTextEmbedder.run
```python
@component.output_types(sparse_embedding=SparseEmbedding)
def run(text: str) -> Dict[str, SparseEmbedding]
```
Embeds text using the Fastembed model.
**Arguments**:
- `text`: A string to embed.
**Raises**:
- `TypeError`: If the input is not a string.
- `RuntimeError`: If the embedding model has not been loaded.
**Returns**:
A dictionary with the following keys:
- `embedding`: A list of floats representing the embedding of the input text.
## Module haystack\_integrations.components.rankers.fastembed.ranker
### FastembedRanker
Ranks Documents based on their similarity to the query using
[Fastembed models](https://qdrant.github.io/fastembed/examples/Supported_Models/).
Documents are indexed from most to least semantically relevant to the query.
Usage example:
```python
from haystack import Document
from haystack_integrations.components.rankers.fastembed import FastembedRanker
ranker = FastembedRanker(model_name="Xenova/ms-marco-MiniLM-L-6-v2", top_k=2)
docs = [Document(content="Paris"), Document(content="Berlin")]
query = "What is the capital of germany?"
output = ranker.run(query=query, documents=docs)
print(output["documents"][0].content)
# Berlin
```
#### FastembedRanker.\_\_init\_\_
```python
def __init__(model_name: str = "Xenova/ms-marco-MiniLM-L-6-v2",
top_k: int = 10,
cache_dir: Optional[str] = None,
threads: Optional[int] = None,
batch_size: int = 64,
parallel: Optional[int] = None,
local_files_only: bool = False,
meta_fields_to_embed: Optional[List[str]] = None,
meta_data_separator: str = "\n")
```
Creates an instance of the 'FastembedRanker'.
**Arguments**:
- `model_name`: Fastembed model name. Check the list of supported models in the [Fastembed documentation](https://qdrant.github.io/fastembed/examples/Supported_Models/).
- `top_k`: The maximum number of documents to return.
- `cache_dir`: The path to the cache directory.
Can be set using the `FASTEMBED_CACHE_PATH` env variable.
Defaults to `fastembed_cache` in the system's temp directory.
- `threads`: The number of threads single onnxruntime session can use. Defaults to None.
- `batch_size`: Number of strings to encode at once.
- `parallel`: If > 1, data-parallel encoding will be used, recommended for offline encoding of large datasets.
If 0, use all available cores.
If None, don't use data-parallel processing, use default onnxruntime threading instead.
- `local_files_only`: If `True`, only use the model files in the `cache_dir`.
- `meta_fields_to_embed`: List of meta fields that should be concatenated
with the document content for reranking.
- `meta_data_separator`: Separator used to concatenate the meta fields
to the Document content.
#### FastembedRanker.to\_dict
```python
def to_dict() -> Dict[str, Any]
```
Serializes the component to a dictionary.
**Returns**:
Dictionary with serialized data.
#### FastembedRanker.from\_dict
```python
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "FastembedRanker"
```
Deserializes the component from a dictionary.
**Arguments**:
- `data`: The dictionary to deserialize from.
**Returns**:
The deserialized component.
#### FastembedRanker.warm\_up
```python
def warm_up()
```
Initializes the component.
#### FastembedRanker.run
```python
@component.output_types(documents=List[Document])
def run(query: str,
documents: List[Document],
top_k: Optional[int] = None) -> Dict[str, List[Document]]
```
Returns a list of documents ranked by their similarity to the given query, using FastEmbed.
**Arguments**:
- `query`: The input query to compare the documents to.
- `documents`: A list of documents to be ranked.
- `top_k`: The maximum number of documents to return.
**Raises**:
- `ValueError`: If `top_k` is not > 0.
**Returns**:
A dictionary with the following keys:
- `documents`: A list of documents closest to the query, sorted from most similar to least similar.