--- title: "Get Started" id: "get-started" description: "Learn how to get up and running with Haystack. The page contains instructions for installing, running your first RAG pipeline, adding data and further resources." --- # Build your first RAG application Let's build your first Retrieval Augmented Generation (RAG) pipeline and see how Haystack answers questions. First, install the minimal form of Haystack: ```shell pip install haystack-ai ```
Are you already using Haystack 1.x? > 🚧 Warning > > Installing `farm-haystack` and `haystack-ai` in the same Python environment (virtualenv, Colab, or system) causes problems. > > Installing both packages in the same environment can somehow work or fail in obscure ways. We suggest installing only one of these packages per Python environment. Make sure that you remove both packages if they are installed in the same environment, followed by installing only one of them: > > ```bash > pip uninstall -y farm-haystack haystack-ai > pip install haystack-ai > ``` > > If you have any questions, please reach out to us on the [GitHub Discussion](https://github.com/deepset-ai/haystack/discussions) or [Discord](https://discord.com/invite/VBpFzsgRVF).
In the example below, we show how to set an API key using a Haystack [Secret](/docs/intro). However, for easier use, you can also set an OpenAI key as an `OPENAI_API_KEY` environment variable. ```python from haystack import Pipeline, Document from haystack.utils import Secret from haystack.document_stores.in_memory import InMemoryDocumentStore from haystack.components.retrievers.in_memory import InMemoryBM25Retriever from haystack.components.generators import OpenAIGenerator from haystack.components.builders.prompt_builder import PromptBuilder # Write documents to InMemoryDocumentStore document_store = InMemoryDocumentStore() document_store.write_documents([ Document(content="My name is Jean and I live in Paris."), Document(content="My name is Mark and I live in Berlin."), Document(content="My name is Giorgio and I live in Rome.") ]) # Build a RAG pipeline prompt_template = """ Given these documents, answer the question. Documents: {% for doc in documents %} {{ doc.content }} {% endfor %} Question: {{question}} Answer: """ retriever = InMemoryBM25Retriever(document_store=document_store) prompt_builder = PromptBuilder(template=prompt_template) llm = OpenAIGenerator(api_key=Secret.from_token(api_key)) rag_pipeline = Pipeline() rag_pipeline.add_component("retriever", retriever) rag_pipeline.add_component("prompt_builder", prompt_builder) rag_pipeline.add_component("llm", llm) rag_pipeline.connect("retriever", "prompt_builder.documents") rag_pipeline.connect("prompt_builder", "llm") # Ask a question question = "Who lives in Paris?" results = rag_pipeline.run( { "retriever": {"query": question}, "prompt_builder": {"question": question}, } ) print(results["llm"]["replies"]) ``` ## Adding Your Data Instead of running the RAG pipeline on example data, learn how you can add your own custom data using [Document Stores](/docs/intro).