# SPDX-FileCopyrightText: 2022-present deepset GmbH # # SPDX-License-Identifier: Apache-2.0 import os from typing import Any, Dict, List, Optional import pytest from openai import OpenAIError from haystack import Pipeline, component from haystack.components.generators.chat import AzureOpenAIChatGenerator from haystack.components.generators.utils import print_streaming_chunk from haystack.dataclasses import ChatMessage, ToolCall from haystack.tools import ComponentTool, Tool from haystack.tools.toolset import Toolset from haystack.utils.auth import Secret from haystack.utils.azure import default_azure_ad_token_provider def get_weather(city: str) -> Dict[str, Any]: weather_info = { "Berlin": {"weather": "mostly sunny", "temperature": 7, "unit": "celsius"}, "Paris": {"weather": "mostly cloudy", "temperature": 8, "unit": "celsius"}, "Rome": {"weather": "sunny", "temperature": 14, "unit": "celsius"}, } return weather_info.get(city, {"weather": "unknown", "temperature": 0, "unit": "celsius"}) @component class MessageExtractor: @component.output_types(messages=List[str], meta=Dict[str, Any]) def run(self, messages: List[ChatMessage], meta: Optional[Dict[str, Any]] = None) -> Dict[str, Any]: """ Extracts the text content of ChatMessage objects :param messages: List of Haystack ChatMessage objects :param meta: Optional metadata to include in the response. :returns: A dictionary with keys "messages" and "meta". """ if meta is None: meta = {} return {"messages": [m.text for m in messages], "meta": meta} @pytest.fixture def tools(): weather_tool = Tool( name="weather", description="useful to determine the weather in a given location", parameters={"type": "object", "properties": {"city": {"type": "string"}}, "required": ["city"]}, function=get_weather, ) # We add a tool that has a more complex parameter signature message_extractor_tool = ComponentTool( component=MessageExtractor(), name="message_extractor", description="Useful for returning the text content of ChatMessage objects", ) return [weather_tool, message_extractor_tool] class TestAzureOpenAIChatGenerator: def test_init_default(self, monkeypatch): monkeypatch.setenv("AZURE_OPENAI_API_KEY", "test-api-key") component = AzureOpenAIChatGenerator(azure_endpoint="some-non-existing-endpoint") assert component.client.api_key == "test-api-key" assert component.azure_deployment == "gpt-4o-mini" assert component.streaming_callback is None assert not component.generation_kwargs def test_init_fail_wo_api_key(self, monkeypatch): monkeypatch.delenv("AZURE_OPENAI_API_KEY", raising=False) monkeypatch.delenv("AZURE_OPENAI_AD_TOKEN", raising=False) with pytest.raises(OpenAIError): AzureOpenAIChatGenerator(azure_endpoint="some-non-existing-endpoint") def test_init_with_parameters(self, tools): component = AzureOpenAIChatGenerator( api_key=Secret.from_token("test-api-key"), azure_endpoint="some-non-existing-endpoint", streaming_callback=print_streaming_chunk, generation_kwargs={"max_tokens": 10, "some_test_param": "test-params"}, tools=tools, tools_strict=True, azure_ad_token_provider=default_azure_ad_token_provider, ) assert component.client.api_key == "test-api-key" assert component.azure_deployment == "gpt-4o-mini" assert component.streaming_callback is print_streaming_chunk assert component.generation_kwargs == {"max_tokens": 10, "some_test_param": "test-params"} assert component.tools == tools assert component.tools_strict assert component.azure_ad_token_provider is not None assert component.max_retries == 5 def test_init_with_0_max_retries(self, tools): """Tests that the max_retries init param is set correctly if equal 0""" component = AzureOpenAIChatGenerator( api_key=Secret.from_token("test-api-key"), azure_endpoint="some-non-existing-endpoint", streaming_callback=print_streaming_chunk, generation_kwargs={"max_tokens": 10, "some_test_param": "test-params"}, tools=tools, tools_strict=True, azure_ad_token_provider=default_azure_ad_token_provider, max_retries=0, ) assert component.client.api_key == "test-api-key" assert component.azure_deployment == "gpt-4o-mini" assert component.streaming_callback is print_streaming_chunk assert component.generation_kwargs == {"max_tokens": 10, "some_test_param": "test-params"} assert component.tools == tools assert component.tools_strict assert component.azure_ad_token_provider is not None assert component.max_retries == 0 def test_to_dict_default(self, monkeypatch): monkeypatch.setenv("AZURE_OPENAI_API_KEY", "test-api-key") component = AzureOpenAIChatGenerator(azure_endpoint="some-non-existing-endpoint") data = component.to_dict() assert data == { "type": "haystack.components.generators.chat.azure.AzureOpenAIChatGenerator", "init_parameters": { "api_key": {"env_vars": ["AZURE_OPENAI_API_KEY"], "strict": False, "type": "env_var"}, "azure_ad_token": {"env_vars": ["AZURE_OPENAI_AD_TOKEN"], "strict": False, "type": "env_var"}, "api_version": "2023-05-15", "azure_endpoint": "some-non-existing-endpoint", "azure_deployment": "gpt-4o-mini", "organization": None, "streaming_callback": None, "generation_kwargs": {}, "timeout": 30.0, "max_retries": 5, "default_headers": {}, "tools": None, "tools_strict": False, "azure_ad_token_provider": None, "http_client_kwargs": None, }, } def test_to_dict_with_parameters(self, monkeypatch): monkeypatch.setenv("ENV_VAR", "test-api-key") component = AzureOpenAIChatGenerator( api_key=Secret.from_env_var("ENV_VAR", strict=False), azure_ad_token=Secret.from_env_var("ENV_VAR1", strict=False), azure_endpoint="some-non-existing-endpoint", streaming_callback=print_streaming_chunk, timeout=2.5, max_retries=10, generation_kwargs={"max_tokens": 10, "some_test_param": "test-params"}, azure_ad_token_provider=default_azure_ad_token_provider, http_client_kwargs={"proxy": "http://localhost:8080"}, ) data = component.to_dict() assert data == { "type": "haystack.components.generators.chat.azure.AzureOpenAIChatGenerator", "init_parameters": { "api_key": {"env_vars": ["ENV_VAR"], "strict": False, "type": "env_var"}, "azure_ad_token": {"env_vars": ["ENV_VAR1"], "strict": False, "type": "env_var"}, "api_version": "2023-05-15", "azure_endpoint": "some-non-existing-endpoint", "azure_deployment": "gpt-4o-mini", "organization": None, "streaming_callback": "haystack.components.generators.utils.print_streaming_chunk", "timeout": 2.5, "max_retries": 10, "generation_kwargs": {"max_tokens": 10, "some_test_param": "test-params"}, "tools": None, "tools_strict": False, "default_headers": {}, "azure_ad_token_provider": "haystack.utils.azure.default_azure_ad_token_provider", "http_client_kwargs": {"proxy": "http://localhost:8080"}, }, } def test_from_dict(self, monkeypatch): monkeypatch.setenv("AZURE_OPENAI_API_KEY", "test-api-key") monkeypatch.setenv("AZURE_OPENAI_AD_TOKEN", "test-ad-token") data = { "type": "haystack.components.generators.chat.azure.AzureOpenAIChatGenerator", "init_parameters": { "api_key": {"env_vars": ["AZURE_OPENAI_API_KEY"], "strict": False, "type": "env_var"}, "azure_ad_token": {"env_vars": ["AZURE_OPENAI_AD_TOKEN"], "strict": False, "type": "env_var"}, "api_version": "2023-05-15", "azure_endpoint": "some-non-existing-endpoint", "azure_deployment": "gpt-4o-mini", "organization": None, "streaming_callback": None, "generation_kwargs": {}, "timeout": 30.0, "max_retries": 5, "default_headers": {}, "tools": [ { "type": "haystack.tools.tool.Tool", "data": { "description": "description", "function": "builtins.print", "name": "name", "parameters": {"x": {"type": "string"}}, }, } ], "tools_strict": False, "http_client_kwargs": None, }, } generator = AzureOpenAIChatGenerator.from_dict(data) assert isinstance(generator, AzureOpenAIChatGenerator) assert generator.api_key == Secret.from_env_var("AZURE_OPENAI_API_KEY", strict=False) assert generator.azure_ad_token == Secret.from_env_var("AZURE_OPENAI_AD_TOKEN", strict=False) assert generator.api_version == "2023-05-15" assert generator.azure_endpoint == "some-non-existing-endpoint" assert generator.azure_deployment == "gpt-4o-mini" assert generator.organization is None assert generator.streaming_callback is None assert generator.generation_kwargs == {} assert generator.timeout == 30.0 assert generator.max_retries == 5 assert generator.default_headers == {} assert generator.tools == [ Tool(name="name", description="description", parameters={"x": {"type": "string"}}, function=print) ] assert generator.tools_strict == False assert generator.http_client_kwargs is None def test_pipeline_serialization_deserialization(self, tmp_path, monkeypatch): monkeypatch.setenv("AZURE_OPENAI_API_KEY", "test-api-key") generator = AzureOpenAIChatGenerator(azure_endpoint="some-non-existing-endpoint") p = Pipeline() p.add_component(instance=generator, name="generator") assert p.to_dict() == { "metadata": {}, "max_runs_per_component": 100, "connection_type_validation": True, "components": { "generator": { "type": "haystack.components.generators.chat.azure.AzureOpenAIChatGenerator", "init_parameters": { "azure_endpoint": "some-non-existing-endpoint", "azure_deployment": "gpt-4o-mini", "organization": None, "api_version": "2023-05-15", "streaming_callback": None, "generation_kwargs": {}, "timeout": 30.0, "max_retries": 5, "api_key": {"type": "env_var", "env_vars": ["AZURE_OPENAI_API_KEY"], "strict": False}, "azure_ad_token": {"type": "env_var", "env_vars": ["AZURE_OPENAI_AD_TOKEN"], "strict": False}, "default_headers": {}, "tools": None, "tools_strict": False, "azure_ad_token_provider": None, "http_client_kwargs": None, }, } }, "connections": [], } p_str = p.dumps() q = Pipeline.loads(p_str) assert p.to_dict() == q.to_dict(), "Pipeline serialization/deserialization w/ AzureOpenAIChatGenerator failed." def test_azure_chat_generator_with_toolset_initialization(self, tools, monkeypatch): """Test that the AzureOpenAIChatGenerator can be initialized with a Toolset.""" monkeypatch.setenv("AZURE_OPENAI_API_KEY", "test-api-key") toolset = Toolset(tools) generator = AzureOpenAIChatGenerator(azure_endpoint="some-non-existing-endpoint", tools=toolset) assert generator.tools == toolset def test_from_dict_with_toolset(self, tools, monkeypatch): """Test that the AzureOpenAIChatGenerator can be deserialized from a dictionary with a Toolset.""" monkeypatch.setenv("AZURE_OPENAI_API_KEY", "test-api-key") toolset = Toolset(tools) component = AzureOpenAIChatGenerator(azure_endpoint="some-non-existing-endpoint", tools=toolset) data = component.to_dict() deserialized_component = AzureOpenAIChatGenerator.from_dict(data) assert isinstance(deserialized_component.tools, Toolset) assert len(deserialized_component.tools) == len(tools) assert all(isinstance(tool, Tool) for tool in deserialized_component.tools) @pytest.mark.integration @pytest.mark.skipif( not os.environ.get("AZURE_OPENAI_API_KEY", None) or not os.environ.get("AZURE_OPENAI_ENDPOINT", None), reason=( "Please export env variables called AZURE_OPENAI_API_KEY containing " "the Azure OpenAI key, AZURE_OPENAI_ENDPOINT containing " "the Azure OpenAI endpoint URL to run this test." ), ) def test_live_run(self): chat_messages = [ChatMessage.from_user("What's the capital of France")] component = AzureOpenAIChatGenerator(organization="HaystackCI") results = component.run(chat_messages) assert len(results["replies"]) == 1 message: ChatMessage = results["replies"][0] assert "Paris" in message.text assert "gpt-4o-mini" in message.meta["model"] assert message.meta["finish_reason"] == "stop" @pytest.mark.integration @pytest.mark.skipif( not os.environ.get("AZURE_OPENAI_API_KEY", None) or not os.environ.get("AZURE_OPENAI_ENDPOINT", None), reason=( "Please export env variables called AZURE_OPENAI_API_KEY containing " "the Azure OpenAI key, AZURE_OPENAI_ENDPOINT containing " "the Azure OpenAI endpoint URL to run this test." ), ) def test_live_run_with_tools(self, tools): chat_messages = [ChatMessage.from_user("What's the weather like in Paris?")] component = AzureOpenAIChatGenerator(organization="HaystackCI", tools=tools) results = component.run(chat_messages) assert len(results["replies"]) == 1 message = results["replies"][0] assert not message.texts assert not message.text assert message.tool_calls tool_call = message.tool_call assert isinstance(tool_call, ToolCall) assert tool_call.tool_name == "weather" assert tool_call.arguments == {"city": "Paris"} assert message.meta["finish_reason"] == "tool_calls" def test_to_dict_with_toolset(self, tools, monkeypatch): """Test that the AzureOpenAIChatGenerator can be serialized to a dictionary with a Toolset.""" monkeypatch.setenv("AZURE_OPENAI_API_KEY", "test-api-key") toolset = Toolset(tools[:1]) component = AzureOpenAIChatGenerator(azure_endpoint="some-non-existing-endpoint", tools=toolset) data = component.to_dict() expected_tools_data = { "type": "haystack.tools.toolset.Toolset", "data": { "tools": [ { "type": "haystack.tools.tool.Tool", "data": { "name": "weather", "description": "useful to determine the weather in a given location", "parameters": { "type": "object", "properties": {"city": {"type": "string"}}, "required": ["city"], }, "function": "generators.chat.test_azure.get_weather", "outputs_to_string": None, "inputs_from_state": None, "outputs_to_state": None, }, } ] }, } assert data["init_parameters"]["tools"] == expected_tools_data class TestAzureOpenAIChatGeneratorAsync: def test_init_should_also_create_async_client_with_same_args(self, tools): component = AzureOpenAIChatGenerator( api_key=Secret.from_token("test-api-key"), azure_endpoint="some-non-existing-endpoint", streaming_callback=print_streaming_chunk, generation_kwargs={"max_tokens": 10, "some_test_param": "test-params"}, tools=tools, tools_strict=True, ) assert component.async_client.api_key == "test-api-key" assert component.azure_deployment == "gpt-4o-mini" assert component.streaming_callback is print_streaming_chunk assert component.generation_kwargs == {"max_tokens": 10, "some_test_param": "test-params"} assert component.tools == tools assert component.tools_strict @pytest.mark.integration @pytest.mark.skipif( not os.environ.get("AZURE_OPENAI_API_KEY", None) or not os.environ.get("AZURE_OPENAI_ENDPOINT", None), reason=( "Please export env variables called AZURE_OPENAI_API_KEY containing " "the Azure OpenAI key, AZURE_OPENAI_ENDPOINT containing " "the Azure OpenAI endpoint URL to run this test." ), ) @pytest.mark.asyncio async def test_live_run_async(self): chat_messages = [ChatMessage.from_user("What's the capital of France")] component = AzureOpenAIChatGenerator(generation_kwargs={"n": 1}) results = await component.run_async(chat_messages) assert len(results["replies"]) == 1 message: ChatMessage = results["replies"][0] assert "Paris" in message.text assert "gpt-4o" in message.meta["model"] assert message.meta["finish_reason"] == "stop" @pytest.mark.integration @pytest.mark.skipif( not os.environ.get("AZURE_OPENAI_API_KEY", None) or not os.environ.get("AZURE_OPENAI_ENDPOINT", None), reason=( "Please export env variables called AZURE_OPENAI_API_KEY containing " "the Azure OpenAI key, AZURE_OPENAI_ENDPOINT containing " "the Azure OpenAI endpoint URL to run this test." ), ) @pytest.mark.asyncio async def test_live_run_with_tools_async(self, tools): chat_messages = [ChatMessage.from_user("What's the weather like in Paris?")] component = AzureOpenAIChatGenerator(tools=tools) results = await component.run_async(chat_messages) assert len(results["replies"]) == 1 message = results["replies"][0] assert not message.texts assert not message.text assert message.tool_calls tool_call = message.tool_call assert isinstance(tool_call, ToolCall) assert tool_call.tool_name == "weather" assert tool_call.arguments == {"city": "Paris"} assert message.meta["finish_reason"] == "tool_calls" # additional tests intentionally omitted as they are covered by test_openai.py