--- title: "Meta Llama API" id: integrations-meta-llama description: "Meta Llama API integration for Haystack" slug: "/integrations-meta-llama" --- ## Module haystack\_integrations.components.generators.meta\_llama.chat.chat\_generator ### MetaLlamaChatGenerator Enables text generation using Llama generative models. For supported models, see [Llama API Docs](https://llama.developer.meta.com/docs/). Users can pass any text generation parameters valid for the Llama Chat Completion API directly to this component via the `generation_kwargs` parameter in `__init__` or the `generation_kwargs` parameter in `run` method. Key Features and Compatibility: - **Primary Compatibility**: Designed to work seamlessly with the Llama API Chat Completion endpoint. - **Streaming Support**: Supports streaming responses from the Llama API Chat Completion endpoint. - **Customizability**: Supports parameters supported by the Llama API Chat Completion endpoint. - **Response Format**: Currently only supports json_schema response format. This component uses the ChatMessage format for structuring both input and output, ensuring coherent and contextually relevant responses in chat-based text generation scenarios. Details on the ChatMessage format can be found in the [Haystack docs](https://docs.haystack.deepset.ai/docs/data-classes#chatmessage) For more details on the parameters supported by the Llama API, refer to the [Llama API Docs](https://llama.developer.meta.com/docs/). Usage example: ```python from haystack_integrations.components.generators.llama import LlamaChatGenerator from haystack.dataclasses import ChatMessage messages = [ChatMessage.from_user("What's Natural Language Processing?")] client = LlamaChatGenerator() response = client.run(messages) print(response) ``` #### MetaLlamaChatGenerator.\_\_init\_\_ ```python def __init__(*, api_key: Secret = Secret.from_env_var("LLAMA_API_KEY"), model: str = "Llama-4-Scout-17B-16E-Instruct-FP8", streaming_callback: Optional[StreamingCallbackT] = None, api_base_url: Optional[str] = "https://api.llama.com/compat/v1/", generation_kwargs: Optional[Dict[str, Any]] = None, tools: Optional[ToolsType] = None) ``` Creates an instance of LlamaChatGenerator. Unless specified otherwise in the `model`, this is for Llama's `Llama-4-Scout-17B-16E-Instruct-FP8` model. **Arguments**: - `api_key`: The Llama API key. - `model`: The name of the Llama chat completion model to use. - `streaming_callback`: A callback function that is called when a new token is received from the stream. The callback function accepts StreamingChunk as an argument. - `api_base_url`: The Llama API Base url. For more details, see LlamaAPI [docs](https://llama.developer.meta.com/docs/features/compatibility/). - `generation_kwargs`: Other parameters to use for the model. These parameters are all sent directly to the Llama API endpoint. See [Llama API docs](https://llama.developer.meta.com/docs/features/compatibility/) for more details. Some of the supported parameters: - `max_tokens`: The maximum number of tokens the output text can have. - `temperature`: What sampling temperature to use. Higher values mean the model will take more risks. Try 0.9 for more creative applications and 0 (argmax sampling) for ones with a well-defined answer. - `top_p`: An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. - `stream`: Whether to stream back partial progress. If set, tokens will be sent as data-only server-sent events as they become available, with the stream terminated by a data: [DONE] message. - `safe_prompt`: Whether to inject a safety prompt before all conversations. - `random_seed`: The seed to use for random sampling. - `response_format`: A JSON schema or a Pydantic model that enforces the structure of the model's response. If provided, the output will always be validated against this format (unless the model returns a tool call). For details, see the [OpenAI Structured Outputs documentation](https://platform.openai.com/docs/guides/structured-outputs). For structured outputs with streaming, the `response_format` must be a JSON schema and not a Pydantic model. - `tools`: A list of Tool and/or Toolset objects, or a single Toolset for which the model can prepare calls. Each tool should have a unique name. #### MetaLlamaChatGenerator.to\_dict ```python def to_dict() -> Dict[str, Any] ``` Serialize this component to a dictionary. **Returns**: The serialized component as a dictionary.