import json import logging import time from pathlib import Path from typing import Dict, List, Optional, Union, Any from fastapi import APIRouter from pydantic import BaseModel from haystack import Pipeline from rest_api.config import PIPELINE_YAML_PATH, LOG_LEVEL, QUERY_PIPELINE_NAME, CONCURRENT_REQUEST_PER_WORKER from rest_api.controller.utils import RequestLimiter logging.getLogger("haystack").setLevel(LOG_LEVEL) logger = logging.getLogger("haystack") router = APIRouter() class Request(BaseModel): query: str params: Optional[dict] = None class Answer(BaseModel): answer: Optional[str] question: Optional[str] score: Optional[float] = None probability: Optional[float] = None context: Optional[str] offset_start: Optional[int] offset_end: Optional[int] offset_start_in_doc: Optional[int] offset_end_in_doc: Optional[int] document_id: Optional[str] = None meta: Optional[Dict[str, Any]] class Response(BaseModel): query: str answers: List[Answer] PIPELINE = Pipeline.load_from_yaml(Path(PIPELINE_YAML_PATH), pipeline_name=QUERY_PIPELINE_NAME) logger.info(f"Loaded pipeline nodes: {PIPELINE.graph.nodes.keys()}") concurrency_limiter = RequestLimiter(CONCURRENT_REQUEST_PER_WORKER) @router.get("/initialized") def initialized(): """ This endpoint can be used during startup to understand if the server is ready to take any requests, or is still loading. The recommended approach is to call this endpoint with a short timeout, like 500ms, and in case of no reply, consider the server busy. """ return True @router.post("/query", response_model=Response) def query(request: Request): with concurrency_limiter.run(): result = _process_request(PIPELINE, request) return result def _process_request(pipeline, request) -> Response: start_time = time.time() params = request.params or {} params["filters"] = params.get("filters") or {} filters = {} if "filters" in params: # put filter values into a list and remove filters with null value for key, values in params["filters"].items(): if values is None: continue if not isinstance(values, list): values = [values] filters[key] = values params["filters"] = filters result = pipeline.run(query=request.query, params=params) end_time = time.time() logger.info({"request": request.dict(), "response": result, "time": f"{(end_time - start_time):.2f}"}) return result