from haystack import Finder from haystack.document_store.elasticsearch import ElasticsearchDocumentStore from haystack.retriever.dense import EmbeddingRetriever from haystack.utils import print_answers import pandas as pd import requests import logging import subprocess import time def tutorial4_faq_style_qa(): ## "FAQ-Style QA": Utilizing existing FAQs for Question Answering # While *extractive Question Answering* works on pure texts and is therefore more generalizable, there's also a common alternative that utilizes existing FAQ data. # # Pros: # - Very fast at inference time # - Utilize existing FAQ data # - Quite good control over answers # # Cons: # - Generalizability: We can only answer questions that are similar to existing ones in FAQ # # In some use cases, a combination of extractive QA and FAQ-style can also be an interesting option. LAUNCH_ELASTICSEARCH=True if LAUNCH_ELASTICSEARCH: logging.info("Starting Elasticsearch ...") status = subprocess.run( ['docker run -d -p 9200:9200 -e "discovery.type=single-node" elasticsearch:7.9.2'], shell=True ) if status.returncode: raise Exception("Failed to launch Elasticsearch. If you want to connect to an existing Elasticsearch instance" "then set LAUNCH_ELASTICSEARCH in the script to False.") time.sleep(15) ### Init the DocumentStore # In contrast to Tutorial 1 (extractive QA), we: # # * specify the name of our `text_field` in Elasticsearch that we want to return as an answer # * specify the name of our `embedding_field` in Elasticsearch where we'll store the embedding of our question and that is used later for calculating our similarity to the incoming user question # * set `excluded_meta_data=["question_emb"]` so that we don't return the huge embedding vectors in our search results document_store = ElasticsearchDocumentStore(host="localhost", username="", password="", index="document", embedding_field="question_emb", embedding_dim=768, excluded_meta_data=["question_emb"], similarity="cosine") ### Create a Retriever using embeddings # Instead of retrieving via Elasticsearch's plain BM25, we want to use vector similarity of the questions (user question vs. FAQ ones). # We can use the `EmbeddingRetriever` for this purpose and specify a model that we use for the embeddings. # retriever = EmbeddingRetriever(document_store=document_store, embedding_model="deepset/sentence_bert", use_gpu=True) # Download a csv containing some FAQ data # Here: Some question-answer pairs related to COVID-19 temp = requests.get("https://raw.githubusercontent.com/deepset-ai/COVID-QA/master/data/faqs/faq_covidbert.csv") open('small_faq_covid.csv', 'wb').write(temp.content) # Get dataframe with columns "question", "answer" and some custom metadata df = pd.read_csv("small_faq_covid.csv") # Minimal cleaning df.fillna(value="", inplace=True) df["question"] = df["question"].apply(lambda x: x.strip()) print(df.head()) # Get embeddings for our questions from the FAQs questions = list(df["question"].values) df["question_emb"] = retriever.embed_queries(texts=questions) df = df.rename(columns={"answer": "text"}) # Convert Dataframe to list of dicts and index them in our DocumentStore docs_to_index = df.to_dict(orient="records") document_store.write_documents(docs_to_index) # Init reader & and use Finder to get answer (same as in Tutorial 1) finder = Finder(reader=None, retriever=retriever) prediction = finder.get_answers_via_similar_questions(question="How is the virus spreading?", top_k_retriever=10) print_answers(prediction, details="all") if __name__ == "__main__": tutorial4_faq_style_qa()