--- title: "ChatMessage" id: chatmessage slug: "/chatmessage" description: "`ChatMessage` is the central abstraction to represent a message for a LLM. It contains role, metadata and several types of content, including text, images, tool calls, tool call results, and reasoning content." --- # ChatMessage `ChatMessage` is the central abstraction to represent a message for a LLM. It contains role, metadata and several types of content, including text, images, tool calls, tool call results, and reasoning content. To create a `ChatMessage` instance, use `from_user`, `from_system`, `from_assistant`, and `from_tool` class methods. The [content](#types-of-content) of the `ChatMessage` can then be inspected using the `text`, `texts`, `image`, `images`, `tool_call`, `tool_calls`, `tool_call_result`, `tool_call_results`, `reasoning`, and `reasonings` properties. If you are looking for the details of this data class methods and parameters, head over to our [API documentation](/reference/data-classes-api#chatmessage). ## Types of Content `ChatMessage` currently supports `TextContent`, `ImageContent`, `ToolCall`, `ToolCallResult`, and `ReasoningContent` types of content: ```python @dataclass class TextContent: """ The textual content of a chat message. :param text: The text content of the message. """ text: str @dataclass class ToolCall: """ Represents a Tool call prepared by the model, usually contained in an assistant message. :param tool_name: The name of the Tool to call. :param arguments: The arguments to call the Tool with. :param id: The ID of the Tool call. :param extra: Dictionary of extra information about the Tool call. Use to store provider-specific information. To avoid serialization issues, values should be JSON serializable. """ tool_name: str arguments: Dict[str, Any] id: Optional[str] = None # noqa: A003 extra: Optional[Dict[str, Any]] = None @dataclass class ToolCallResult: """ Represents the result of a Tool invocation. :param result: The result of the Tool invocation. :param origin: The Tool call that produced this result. :param error: Whether the Tool invocation resulted in an error. """ result: str origin: ToolCall error: bool @dataclass class ImageContent: """ The image content of a chat message. :param base64_image: A base64 string representing the image. :param mime_type: The MIME type of the image (e.g. "image/png", "image/jpeg"). Providing this value is recommended, as most LLM providers require it. If not provided, the MIME type is guessed from the base64 string, which can be slow and not always reliable. :param detail: Optional detail level of the image (only supported by OpenAI). One of "auto", "high", or "low". :param meta: Optional metadata for the image. :param validation: If True (default), a validation process is performed: - Check whether the base64 string is valid; - Guess the MIME type if not provided; - Check if the MIME type is a valid image MIME type. Set to False to skip validation and speed up initialization. """ base64_image: str mime_type: Optional[str] = None detail: Optional[Literal["auto", "high", "low"]] = None meta: Dict[str, Any] = field(default_factory=dict) validation: bool = True @dataclass class ReasoningContent: """ Represents the optional reasoning content prepared by the model, usually contained in an assistant message. :param reasoning_text: The reasoning text produced by the model. :param extra: Dictionary of extra information about the reasoning content. Use to store provider-specific information. To avoid serialization issues, values should be JSON serializable. """ reasoning_text: str extra: Dict[str, Any] = field(default_factory=dict) ``` The `ImageContent` dataclass also provides two convenience class methods: `from_file_path` and `from_url`. For more details, refer to our [API documentation](/reference/data-classes-api#imagecontent). ## Working with a ChatMessage The following examples demonstrate how to create a `ChatMessage` and inspect its properties. ### from_user with TextContent ```python from haystack.dataclasses import ChatMessage user_message = ChatMessage.from_user("What is the capital of Australia?") print(user_message) >>> ChatMessage( >>> _role=, >>> _content=[TextContent(text='What is the capital of Australia?')], >>> _name=None, >>> _meta={} >>>) print(user_message.text) >>> What is the capital of Australia? print(user_message.texts) >>> ['What is the capital of Australia?'] ``` ### from_user with TextContent and ImageContent ```python from haystack.dataclasses import ChatMessage, ImageContent lion_image_url = ( "https://images.unsplash.com/photo-1546182990-dffeafbe841d?" "ixlib=rb-4.0&q=80&w=1080&fit=max" ) image_content = ImageContent.from_url(lion_image_url, detail="low") user_message = ChatMessage.from_user( content_parts=[ "What does the image show?", image_content ]) print(user_message) >>> ChatMessage( >>> _role=, >>> _content=[ >>> TextContent(text='What does the image show?'), >>> ImageContent( >>> base64_image='/9j/4...', >>> mime_type='image/jpeg', >>> detail='low', >>> meta={ >>> 'content_type': 'image/jpeg', >>> 'url': '...' >>> } >>> ) >>> ], >>> _name=None, >>> _meta={} >>> ) print(user_message.text) >>> What does the image show? print(user_message.texts) >>> ['What does the image show?'] print(user_message.image) >>> ImageContent( >>> base64_image='/9j/4...', >>> mime_type='image/jpeg', >>> detail='low', >>> meta={ >>> 'content_type': 'image/jpeg', >>> 'url': '...' >>> } >>> ) ``` ### from_assistant with TextContent ```python from haystack.dataclasses import ChatMessage assistant_message = ChatMessage.from_assistant("How can I assist you today?") print(assistant_message) >>> ChatMessage( >>> _role=, >>> _content=[TextContent(text='How can I assist you today?')], >>> _name=None, >>> _meta={} >>>) print(assistant_message.text) >>> How can I assist you today? print(assistant_message.texts) >>> ['How can I assist you today?'] ``` ### from_assistant with ToolCall ```python from haystack.dataclasses import ChatMessage, ToolCall tool_call = ToolCall(tool_name="weather_tool", arguments={"location": "Rome"}) assistant_message_w_tool_call = ChatMessage.from_assistant(tool_calls=[tool_call]) print(assistant_message_w_tool_call) >>> ChatMessage( >>> _role=, >>> _content=[ToolCall(tool_name='weather_tool', arguments={'location': 'Rome'}, id=None)], >>> _name=None, >>> _meta={} >>>) print(assistant_message_w_tool_call.text) >>> None print(assistant_message_w_tool_call.texts) >>> [] print(assistant_message_w_tool_call.tool_call) >>> ToolCall(tool_name='weather_tool', arguments={'location': 'Rome'}, id=None) print(assistant_message_w_tool_call.tool_calls) >>> [ToolCall(tool_name='weather_tool', arguments={'location': 'Rome'}, id=None)] print(assistant_message_w_tool_call.tool_call_result) >>> None print(assistant_message_w_tool_call.tool_call_results) >>> [] ``` ### from_tool ```python from haystack.dataclasses import ChatMessage tool_message = ChatMessage.from_tool(tool_result="temperature: 25°C", origin=tool_call, error=False) print(tool_message) >>> ChatMessage( >>> _role=, >>> _content=[ToolCallResult( >>> result='temperature: 25°C', >>> origin=ToolCall(tool_name='weather_tool', arguments={'location': 'Rome'}, id=None), >>> error=False >>> )], >>> _name=None, >>> _meta={} >>>) print(tool_message.text) >>> None print(tool_message.texts) >>> [] print(tool_message.tool_call) >>> None print(tool_message.tool_calls) >>> [] print(tool_message.tool_call_result) >>> ToolCallResult( >>> result='temperature: 25°C', >>> origin=ToolCall(tool_name='weather_tool', arguments={'location': 'Rome'}, id=None), >>> error=False >>> ) print(tool_message.tool_call_results) >>> [ >>> ToolCallResult( >>> result='temperature: 25°C', >>> origin=ToolCall(tool_name='weather_tool', arguments={'location': 'Rome'}, id=None), >>> error=False >>> ) >>> ] ``` ## Migrating from Legacy ChatMessage (before v2.9) In Haystack 2.9, we updated the `ChatMessage` data class for greater flexibility and support for multiple content types: text, tool calls, and tool call results. There are some breaking changes involved, so we recommend reviewing this guide to migrate smoothly. ### Creating a ChatMessage You can no longer directly initialize `ChatMessage` using `role`, `content`, and `meta`. - Use the following class methods instead: `from_assistant`, `from_user`, `from_system`, and `from_tool`. - Replace the `content` parameter with `text`. ```python from haystack.dataclasses import ChatMessage ## LEGACY - DOES NOT WORK IN 2.9.0 message = ChatMessage(role=ChatRole.USER, content="Hello!") ## Use the class method instead message = ChatMessage.from_user("Hello!") ``` ### Accessing ChatMessage Attributes - The legacy `content` attribute is now internal (`_content`). - Inspect `ChatMessage` attributes using the following properties: - `role` - `meta` - `name` - `text` and `texts` - `image` and `images` - `tool_call` and `tool_calls` - `tool_call_result` and `tool_call_results` - `reasoning` and `reasonings` ```python from haystack.dataclasses import ChatMessage message = ChatMessage.from_user("Hello!") ## LEGACY - DOES NOT WORK IN 2.9.0 print(message.content) ## Use the appropriate property instead print(message.text) ```