--- title: "FastembedSparseDocumentEmbedder" id: fastembedsparsedocumentembedder slug: "/fastembedsparsedocumentembedder" description: "Use this component to enrich a list of documents with their sparse embeddings." --- # FastembedSparseDocumentEmbedder Use this component to enrich a list of documents with their sparse embeddings.
| | | | --- | --- | | **Most common position in a pipeline** | Before a [`DocumentWriter`](../writers/documentwriter.mdx) in an indexing pipeline | | **Mandatory run variables** | `documents`: A list of documents | | **Output variables** | `documents`: A list of documents (enriched with sparse embeddings) | | **API reference** | [FastEmbed](/reference/fastembed-embedders) | | **GitHub link** | https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/fastembed |
To compute a sparse embedding for a string, use the [`FastembedSparseTextEmbedder`](fastembedsparsetextembedder.mdx). ## Overview `FastembedSparseDocumentEmbedder` computes the sparse embeddings of a list of documents and stores the obtained vectors in the `sparse_embedding` field of each document. It uses sparse embedding [models](https://qdrant.github.io/fastembed/examples/Supported_Models/#supported-sparse-text-embedding-models) supported by FastEmbed. The vectors calculated by this component are necessary for performing sparse embedding retrieval on a set of documents. During retrieval, the sparse vector representing the query is compared to those of the documents to identify the most similar or relevant ones. ### Compatible models You can find the supported models in the [FastEmbed documentation](https://qdrant.github.io/fastembed/examples/Supported_Models/#supported-sparse-text-embedding-models). Currently, supported models are based on SPLADE, a technique for producing sparse representations for text, where each non-zero value in the embedding is the importance weight of a term in the BERT WordPiece vocabulary. For more information, see [our docs](../retrievers.mdx#sparse-embedding-based-retrievers) that explain sparse embedding-based Retrievers further. ### Installation To start using this integration with Haystack, install the package with: ```shell pip install fastembed-haystack ``` ### Parameters You can set the path where the model will be stored in a cache directory. Also, you can set the number of threads a single `onnxruntime` session can use: ```python cache_dir= "/your_cacheDirectory" embedder = FastembedSparseDocumentEmbedder( model="prithivida/Splade_PP_en_v1", cache_dir=cache_dir, threads=2 ) ``` If you want to use the data parallel encoding, you can set the parameters `parallel` and `batch_size`. - If `parallel` > 1, data-parallel encoding will be used. This is recommended for offline encoding of large datasets. - If `parallel` is 0, use all available cores. - If None, don't use data-parallel processing; use default `onnxruntime` threading instead. :::tip If you create both a Sparse Text Embedder and a Sparse Document Embedder based on the same model, Haystack utilizes a shared resource behind the scenes to conserve resources. ::: ### Embedding Metadata Text documents often include metadata. If the metadata is distinctive and semantically meaningful, you can embed it along with the document's text to improve retrieval. You can do this easily by using the sparse Document Embedder: ```python from haystack.preview import Document from haystack_integrations.components.embedders.fastembed import FastembedSparseDocumentEmbedder doc = Document(text="some text", metadata={"title": "relevant title", "page number": 18}) embedder = FastembedSparseDocumentEmbedder( model="prithivida/Splade_PP_en_v1", metadata_fields_to_embed=["title"] ) docs_w_sparse_embeddings = embedder.run(documents=[doc])["documents"] ``` ## Usage ### On its own ```python from haystack.dataclasses import Document from haystack_integrations.components.embedders.fastembed import FastembedSparseDocumentEmbedder document_list = [ Document(content="I love pizza!"), Document(content="I like spaghetti") ] doc_embedder = FastembedSparseDocumentEmbedder() doc_embedder.warm_up() result = doc_embedder.run(document_list) print(result['documents'][0]) ## Document(id=..., ## content: 'I love pizza!', ## sparse_embedding: vector with 24 non-zero elements) ``` ### In a pipeline Currently, sparse embedding retrieval is only supported by `QdrantDocumentStore`. First, install the package with: ```shell pip install qdrant-haystack ``` Then, try out this pipeline: ```python from haystack import Document, Pipeline from haystack.components.writers import DocumentWriter from haystack_integrations.components.retrievers.qdrant import QdrantSparseEmbeddingRetriever from haystack_integrations.document_stores.qdrant import QdrantDocumentStore from haystack.document_stores.types import DuplicatePolicy from haystack_integrations.components.embedders.fastembed import FastembedDocumentEmbedder, FastembedTextEmbedder document_store = QdrantDocumentStore( ":memory:", recreate_index=True, use_sparse_embeddings=True ) documents = [ Document(content="My name is Wolfgang and I live in Berlin"), Document(content="I saw a black horse running"), Document(content="Germany has many big cities"), Document(content="fastembed is supported by and maintained by Qdrant."), ] sparse_document_embedder = FastembedSparseDocumentEmbedder() writer = DocumentWriter(document_store=document_store, policy=DuplicatePolicy.OVERWRITE) indexing_pipeline = Pipeline() indexing_pipeline.add_component("sparse_document_embedder", sparse_document_embedder) indexing_pipeline.add_component("writer", writer) indexing_pipeline.connect("sparse_document_embedder", "writer") indexing_pipeline.run({"sparse_document_embedder": {"documents": documents}}) query_pipeline = Pipeline() query_pipeline.add_component("sparse_text_embedder", FastembedSparseTextEmbedder()) query_pipeline.add_component("sparse_retriever", QdrantSparseEmbeddingRetriever(document_store=document_store)) query_pipeline.connect("sparse_text_embedder.sparse_embedding", "sparse_retriever.query_sparse_embedding") query = "Who supports fastembed?" result = query_pipeline.run({"sparse_text_embedder": {"text": query}}) print(result["sparse_retriever"]["documents"][0]) # noqa: T201 ## Document(id=..., ## content: 'fastembed is supported by and maintained by Qdrant.', ## score: 0.758..) ``` ## Additional References 🧑‍🍳 Cookbook: [Sparse Embedding Retrieval with Qdrant and FastEmbed](https://haystack.deepset.ai/cookbook/sparse_embedding_retrieval)