# SPDX-FileCopyrightText: 2022-present deepset GmbH # # SPDX-License-Identifier: Apache-2.0 import logging from unittest.mock import patch import pandas as pd import pytest import tempfile from haystack import Document from haystack.document_stores.errors import DocumentStoreError, DuplicateDocumentError from haystack.document_stores.in_memory import InMemoryDocumentStore from haystack.testing.document_store import DocumentStoreBaseTests, FilterDocumentsTestWithDataframe class TestMemoryDocumentStore(DocumentStoreBaseTests, FilterDocumentsTestWithDataframe): # pylint: disable=R0904 """ Test InMemoryDocumentStore's specific features """ @pytest.fixture def tmp_dir(self): with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir @pytest.fixture def document_store(self) -> InMemoryDocumentStore: return InMemoryDocumentStore(bm25_algorithm="BM25L") def test_to_dict(self): store = InMemoryDocumentStore() data = store.to_dict() assert data == { "type": "haystack.document_stores.in_memory.document_store.InMemoryDocumentStore", "init_parameters": { "bm25_tokenization_regex": r"(?u)\b\w\w+\b", "bm25_algorithm": "BM25L", "bm25_parameters": {}, "embedding_similarity_function": "dot_product", "index": store.index, }, } def test_to_dict_with_custom_init_parameters(self): store = InMemoryDocumentStore( bm25_tokenization_regex="custom_regex", bm25_algorithm="BM25Plus", bm25_parameters={"key": "value"}, embedding_similarity_function="cosine", index="my_cool_index", ) data = store.to_dict() assert data == { "type": "haystack.document_stores.in_memory.document_store.InMemoryDocumentStore", "init_parameters": { "bm25_tokenization_regex": "custom_regex", "bm25_algorithm": "BM25Plus", "bm25_parameters": {"key": "value"}, "embedding_similarity_function": "cosine", "index": "my_cool_index", }, } @patch("haystack.document_stores.in_memory.document_store.re") def test_from_dict(self, mock_regex): data = { "type": "haystack.document_stores.in_memory.document_store.InMemoryDocumentStore", "init_parameters": { "bm25_tokenization_regex": "custom_regex", "bm25_algorithm": "BM25Plus", "bm25_parameters": {"key": "value"}, "index": "my_cool_index", }, } store = InMemoryDocumentStore.from_dict(data) mock_regex.compile.assert_called_with("custom_regex") assert store.tokenizer assert store.bm25_algorithm == "BM25Plus" assert store.bm25_parameters == {"key": "value"} assert store.index == "my_cool_index" def test_save_to_disk_and_load_from_disk(self, tmp_dir: str): docs = [Document(content="Hello world"), Document(content="Haystack supports multiple languages")] document_store = InMemoryDocumentStore() document_store.write_documents(docs) tmp_dir = tmp_dir + "/document_store.json" document_store.save_to_disk(tmp_dir) document_store_loaded = InMemoryDocumentStore.load_from_disk(tmp_dir) assert document_store_loaded.count_documents() == 2 assert list(document_store_loaded.storage.values()) == docs assert document_store_loaded.to_dict() == document_store.to_dict() def test_invalid_bm25_algorithm(self): with pytest.raises(ValueError, match="BM25 algorithm 'invalid' is not supported"): InMemoryDocumentStore(bm25_algorithm="invalid") def test_write_documents(self, document_store): docs = [Document(id="1")] assert document_store.write_documents(docs) == 1 with pytest.raises(DuplicateDocumentError): document_store.write_documents(docs) def test_bm25_retrieval(self, document_store: InMemoryDocumentStore): # Tests if the bm25_retrieval method returns the correct document based on the input query. docs = [Document(content="Hello world"), Document(content="Haystack supports multiple languages")] document_store.write_documents(docs) results = document_store.bm25_retrieval(query="What languages?", top_k=1) assert len(results) == 1 assert results[0].content == "Haystack supports multiple languages" def test_bm25_retrieval_with_empty_document_store(self, document_store: InMemoryDocumentStore, caplog): caplog.set_level(logging.INFO) # Tests if the bm25_retrieval method correctly returns an empty list when there are no documents in the DocumentStore. results = document_store.bm25_retrieval(query="How to test this?", top_k=2) assert len(results) == 0 assert "No documents found for BM25 retrieval. Returning empty list." in caplog.text def test_bm25_retrieval_empty_query(self, document_store: InMemoryDocumentStore): # Tests if the bm25_retrieval method returns a document when the query is an empty string. docs = [Document(content="Hello world"), Document(content="Haystack supports multiple languages")] document_store.write_documents(docs) with pytest.raises(ValueError, match="Query should be a non-empty string"): document_store.bm25_retrieval(query="", top_k=1) def test_bm25_retrieval_with_different_top_k(self, document_store: InMemoryDocumentStore): # Tests if the bm25_retrieval method correctly changes the number of returned documents # based on the top_k parameter. docs = [ Document(content="Hello world"), Document(content="Haystack supports multiple languages"), Document(content="Python is a popular programming language"), ] document_store.write_documents(docs) # top_k = 2 results = document_store.bm25_retrieval(query="language", top_k=2) assert len(results) == 2 # top_k = 3 results = document_store.bm25_retrieval(query="languages", top_k=3) assert len(results) == 3 def test_bm25_plus_retrieval(self): doc_store = InMemoryDocumentStore(bm25_algorithm="BM25Plus") docs = [ Document(content="Hello world"), Document(content="Haystack supports multiple languages"), Document(content="Python is a popular programming language"), ] doc_store.write_documents(docs) results = doc_store.bm25_retrieval(query="language", top_k=1) assert len(results) == 1 assert results[0].content == "Python is a popular programming language" def test_bm25_retrieval_with_two_queries(self, document_store: InMemoryDocumentStore): # Tests if the bm25_retrieval method returns different documents for different queries. docs = [ Document(content="Javascript is a popular programming language"), Document(content="Java is a popular programming language"), Document(content="Python is a popular programming language"), Document(content="Ruby is a popular programming language"), Document(content="PHP is a popular programming language"), ] document_store.write_documents(docs) results = document_store.bm25_retrieval(query="Java", top_k=1) assert results[0].content == "Java is a popular programming language" results = document_store.bm25_retrieval(query="Python", top_k=1) assert results[0].content == "Python is a popular programming language" # Test a query, add a new document and make sure results are appropriately updated def test_bm25_retrieval_with_updated_docs(self, document_store: InMemoryDocumentStore): # Tests if the bm25_retrieval method correctly updates the retrieved documents when new # documents are added to the DocumentStore. docs = [Document(content="Hello world")] document_store.write_documents(docs) results = document_store.bm25_retrieval(query="Python", top_k=1) assert len(results) == 0 document_store.write_documents([Document(content="Python is a popular programming language")]) results = document_store.bm25_retrieval(query="Python", top_k=1) assert len(results) == 1 assert results[0].content == "Python is a popular programming language" document_store.write_documents([Document(content="Java is a popular programming language")]) results = document_store.bm25_retrieval(query="Python", top_k=1) assert len(results) == 1 assert results[0].content == "Python is a popular programming language" def test_bm25_retrieval_with_scale_score(self, document_store: InMemoryDocumentStore): docs = [Document(content="Python programming"), Document(content="Java programming")] document_store.write_documents(docs) results1 = document_store.bm25_retrieval(query="Python", top_k=1, scale_score=True) # Confirm that score is scaled between 0 and 1 assert results1[0].score is not None assert 0.0 <= results1[0].score <= 1.0 # Same query, different scale, scores differ when not scaled results = document_store.bm25_retrieval(query="Python", top_k=1, scale_score=False) assert results[0].score != results1[0].score def test_bm25_retrieval_with_non_scaled_BM25Okapi(self): # Highly repetitive documents make BM25Okapi return negative scores, which should not be filtered if the # scores are not scaled docs = [ Document( content="""Use pip to install a basic version of Haystack's latest release: pip install farm-haystack. All the core Haystack components live in the haystack repo. But there's also the haystack-extras repo which contains components that are not as widely used, and you need to install them separately.""" ), Document( content="""Use pip to install a basic version of Haystack's latest release: pip install farm-haystack[inference]. All the core Haystack components live in the haystack repo. But there's also the haystack-extras repo which contains components that are not as widely used, and you need to install them separately.""" ), Document( content="""Use pip to install only the Haystack 2.0 code: pip install haystack-ai. The haystack-ai package is built on the main branch which is an unstable beta version, but it's useful if you want to try the new features as soon as they are merged.""" ), ] document_store = InMemoryDocumentStore(bm25_algorithm="BM25Okapi") document_store.write_documents(docs) results1 = document_store.bm25_retrieval(query="Haystack installation", top_k=10, scale_score=False) assert len(results1) == 3 assert all(res.score < 0.0 for res in results1) results2 = document_store.bm25_retrieval(query="Haystack installation", top_k=10, scale_score=True) assert len(results2) == 3 assert all(0.0 <= res.score <= 1.0 for res in results2) def test_bm25_retrieval_with_table_content(self, document_store: InMemoryDocumentStore): # Tests if the bm25_retrieval method correctly returns a dataframe when the content_type is table. table_content = pd.DataFrame({"language": ["Python", "Java"], "use": ["Data Science", "Web Development"]}) docs = [Document(dataframe=table_content), Document(content="Gardening"), Document(content="Bird watching")] document_store.write_documents(docs) results = document_store.bm25_retrieval(query="Java", top_k=1) assert len(results) == 1 df = results[0].dataframe assert isinstance(df, pd.DataFrame) assert df.equals(table_content) def test_bm25_retrieval_with_text_and_table_content(self, document_store: InMemoryDocumentStore, caplog): table_content = pd.DataFrame({"language": ["Python", "Java"], "use": ["Data Science", "Web Development"]}) document = Document(content="Gardening", dataframe=table_content) docs = [ Document(content="Python"), Document(content="Bird Watching"), Document(content="Gardening"), Document(content="Java"), document, ] document_store.write_documents(docs) results = document_store.bm25_retrieval(query="Gardening", top_k=2) assert document.id in [d.id for d in results] assert "both text and dataframe content" in caplog.text results = document_store.bm25_retrieval(query="Python", top_k=2) assert document.id not in [d.id for d in results] def test_bm25_retrieval_default_filter_for_text_and_dataframes(self, document_store: InMemoryDocumentStore): docs = [Document(), Document(content="Gardening"), Document(content="Bird watching")] document_store.write_documents(docs) results = document_store.bm25_retrieval(query="doesn't matter, top_k is 10", top_k=10) assert len(results) == 0 def test_embedding_retrieval(self): docstore = InMemoryDocumentStore(embedding_similarity_function="cosine") # Tests if the embedding retrieval method returns the correct document based on the input query embedding. docs = [ Document(content="Hello world", embedding=[0.1, 0.2, 0.3, 0.4]), Document(content="Haystack supports multiple languages", embedding=[1.0, 1.0, 1.0, 1.0]), ] docstore.write_documents(docs) results = docstore.embedding_retrieval( query_embedding=[0.1, 0.1, 0.1, 0.1], top_k=1, filters={}, scale_score=False ) assert len(results) == 1 assert results[0].content == "Haystack supports multiple languages" def test_embedding_retrieval_invalid_query(self): docstore = InMemoryDocumentStore() with pytest.raises(ValueError, match="query_embedding should be a non-empty list of floats"): docstore.embedding_retrieval(query_embedding=[]) with pytest.raises(ValueError, match="query_embedding should be a non-empty list of floats"): docstore.embedding_retrieval(query_embedding=["invalid", "list", "of", "strings"]) # type: ignore def test_embedding_retrieval_no_embeddings(self, caplog): caplog.set_level(logging.WARNING) docstore = InMemoryDocumentStore() docs = [Document(content="Hello world"), Document(content="Haystack supports multiple languages")] docstore.write_documents(docs) results = docstore.embedding_retrieval(query_embedding=[0.1, 0.1, 0.1, 0.1]) assert len(results) == 0 assert "No Documents found with embeddings. Returning empty list." in caplog.text def test_embedding_retrieval_some_documents_wo_embeddings(self, caplog): caplog.set_level(logging.INFO) docstore = InMemoryDocumentStore() docs = [ Document(content="Hello world", embedding=[0.1, 0.2, 0.3, 0.4]), Document(content="Haystack supports multiple languages"), ] docstore.write_documents(docs) docstore.embedding_retrieval(query_embedding=[0.1, 0.1, 0.1, 0.1]) assert "Skipping some Documents that don't have an embedding." in caplog.text def test_embedding_retrieval_documents_different_embedding_sizes(self): docstore = InMemoryDocumentStore() docs = [ Document(content="Hello world", embedding=[0.1, 0.2, 0.3, 0.4]), Document(content="Haystack supports multiple languages", embedding=[1.0, 1.0]), ] docstore.write_documents(docs) with pytest.raises(DocumentStoreError, match="The embedding size of all Documents should be the same."): docstore.embedding_retrieval(query_embedding=[0.1, 0.1, 0.1, 0.1]) def test_embedding_retrieval_query_documents_different_embedding_sizes(self): docstore = InMemoryDocumentStore() docs = [Document(content="Hello world", embedding=[0.1, 0.2, 0.3, 0.4])] docstore.write_documents(docs) with pytest.raises( DocumentStoreError, match="The embedding size of the query should be the same as the embedding size of the Documents.", ): docstore.embedding_retrieval(query_embedding=[0.1, 0.1]) def test_embedding_retrieval_with_different_top_k(self): docstore = InMemoryDocumentStore() docs = [ Document(content="Hello world", embedding=[0.1, 0.2, 0.3, 0.4]), Document(content="Haystack supports multiple languages", embedding=[1.0, 1.0, 1.0, 1.0]), Document(content="Python is a popular programming language", embedding=[0.5, 0.5, 0.5, 0.5]), ] docstore.write_documents(docs) results = docstore.embedding_retrieval(query_embedding=[0.1, 0.1, 0.1, 0.1], top_k=2) assert len(results) == 2 results = docstore.embedding_retrieval(query_embedding=[0.1, 0.1, 0.1, 0.1], top_k=3) assert len(results) == 3 def test_embedding_retrieval_with_scale_score(self): docstore = InMemoryDocumentStore() docs = [ Document(content="Hello world", embedding=[0.1, 0.2, 0.3, 0.4]), Document(content="Haystack supports multiple languages", embedding=[1.0, 1.0, 1.0, 1.0]), Document(content="Python is a popular programming language", embedding=[0.5, 0.5, 0.5, 0.5]), ] docstore.write_documents(docs) results1 = docstore.embedding_retrieval(query_embedding=[0.1, 0.1, 0.1, 0.1], top_k=1, scale_score=True) # Confirm that score is scaled between 0 and 1 assert results1[0].score is not None assert 0.0 <= results1[0].score <= 1.0 # Same query, different scale, scores differ when not scaled results = docstore.embedding_retrieval(query_embedding=[0.1, 0.1, 0.1, 0.1], top_k=1, scale_score=False) assert results[0].score != results1[0].score def test_embedding_retrieval_return_embedding(self): docstore = InMemoryDocumentStore(embedding_similarity_function="cosine") docs = [ Document(content="Hello world", embedding=[0.1, 0.2, 0.3, 0.4]), Document(content="Haystack supports multiple languages", embedding=[1.0, 1.0, 1.0, 1.0]), ] docstore.write_documents(docs) results = docstore.embedding_retrieval(query_embedding=[0.1, 0.1, 0.1, 0.1], top_k=1, return_embedding=False) assert results[0].embedding is None results = docstore.embedding_retrieval(query_embedding=[0.1, 0.1, 0.1, 0.1], top_k=1, return_embedding=True) assert results[0].embedding == [1.0, 1.0, 1.0, 1.0] def test_compute_cosine_similarity_scores(self): docstore = InMemoryDocumentStore(embedding_similarity_function="cosine") docs = [ Document(content="Document 1", embedding=[1.0, 0.0, 0.0, 0.0]), Document(content="Document 2", embedding=[1.0, 1.0, 1.0, 1.0]), ] scores = docstore._compute_query_embedding_similarity_scores( embedding=[0.1, 0.1, 0.1, 0.1], documents=docs, scale_score=False ) assert scores == [0.5, 1.0] def test_compute_dot_product_similarity_scores(self): docstore = InMemoryDocumentStore(embedding_similarity_function="dot_product") docs = [ Document(content="Document 1", embedding=[1.0, 0.0, 0.0, 0.0]), Document(content="Document 2", embedding=[1.0, 1.0, 1.0, 1.0]), ] scores = docstore._compute_query_embedding_similarity_scores( embedding=[0.1, 0.1, 0.1, 0.1], documents=docs, scale_score=False ) assert scores == [0.1, 0.4] def test_multiple_document_stores_using_same_index(self): index = "test_multiple_document_stores_using_same_index" document_store_1 = InMemoryDocumentStore(index=index) document_store_2 = InMemoryDocumentStore(index=index) assert document_store_1.count_documents() == document_store_2.count_documents() == 0 doc_1 = Document(content="Hello world") document_store_1.write_documents([doc_1]) assert document_store_1.count_documents() == document_store_2.count_documents() == 1 assert document_store_1.filter_documents() == document_store_2.filter_documents() == [doc_1] doc_2 = Document(content="Hello another world") document_store_2.write_documents([doc_2]) assert document_store_1.count_documents() == document_store_2.count_documents() == 2 assert document_store_1.filter_documents() == document_store_2.filter_documents() == [doc_1, doc_2] document_store_1.delete_documents([doc_2.id]) assert document_store_1.count_documents() == document_store_2.count_documents() == 1 document_store_2.delete_documents([doc_1.id]) assert document_store_1.count_documents() == document_store_2.count_documents() == 0