# SPDX-FileCopyrightText: 2022-present deepset GmbH # # SPDX-License-Identifier: Apache-2.0 import os import pytest from haystack import Document from haystack.components.embedders import AzureOpenAIDocumentEmbedder class TestAzureOpenAIDocumentEmbedder: def test_init_default(self, monkeypatch): monkeypatch.setenv("AZURE_OPENAI_API_KEY", "fake-api-key") embedder = AzureOpenAIDocumentEmbedder(azure_endpoint="https://example-resource.azure.openai.com/") assert embedder.azure_deployment == "text-embedding-ada-002" assert embedder.dimensions is None assert embedder.organization is None assert embedder.prefix == "" assert embedder.suffix == "" assert embedder.batch_size == 32 assert embedder.progress_bar is True assert embedder.meta_fields_to_embed == [] assert embedder.embedding_separator == "\n" def test_to_dict(self, monkeypatch): monkeypatch.setenv("AZURE_OPENAI_API_KEY", "fake-api-key") component = AzureOpenAIDocumentEmbedder(azure_endpoint="https://example-resource.azure.openai.com/") data = component.to_dict() assert data == { "type": "haystack.components.embedders.azure_document_embedder.AzureOpenAIDocumentEmbedder", "init_parameters": { "api_key": {"env_vars": ["AZURE_OPENAI_API_KEY"], "strict": False, "type": "env_var"}, "azure_ad_token": {"env_vars": ["AZURE_OPENAI_AD_TOKEN"], "strict": False, "type": "env_var"}, "api_version": "2023-05-15", "azure_deployment": "text-embedding-ada-002", "dimensions": None, "azure_endpoint": "https://example-resource.azure.openai.com/", "organization": None, "prefix": "", "suffix": "", "batch_size": 32, "progress_bar": True, "meta_fields_to_embed": [], "embedding_separator": "\n", }, } @pytest.mark.integration @pytest.mark.skipif( not os.environ.get("AZURE_OPENAI_API_KEY", None) and not os.environ.get("AZURE_OPENAI_ENDPOINT", None), reason=( "Please export env variables called AZURE_OPENAI_API_KEY containing " "the Azure OpenAI key, AZURE_OPENAI_ENDPOINT containing " "the Azure OpenAI endpoint URL to run this test." ), ) def test_run(self): docs = [ Document(content="I love cheese", meta={"topic": "Cuisine"}), Document(content="A transformer is a deep learning architecture", meta={"topic": "ML"}), ] # the default model is text-embedding-ada-002 even if we don't specify it, but let's be explicit embedder = AzureOpenAIDocumentEmbedder( azure_deployment="text-embedding-ada-002", meta_fields_to_embed=["topic"], embedding_separator=" | ", organization="HaystackCI", ) result = embedder.run(documents=docs) documents_with_embeddings = result["documents"] metadata = result["meta"] assert isinstance(documents_with_embeddings, list) assert len(documents_with_embeddings) == len(docs) for doc in documents_with_embeddings: assert isinstance(doc, Document) assert isinstance(doc.embedding, list) assert len(doc.embedding) == 1536 assert all(isinstance(x, float) for x in doc.embedding) assert metadata == {"model": "ada", "usage": {"prompt_tokens": 15, "total_tokens": 15}}