--- title: "OpenRouter" id: integrations-openrouter description: "OpenRouter integration for Haystack" slug: "/integrations-openrouter" --- ## Module haystack\_integrations.components.generators.openrouter.chat.chat\_generator ### OpenRouterChatGenerator Enables text generation using OpenRouter generative models. For supported models, see [OpenRouter docs](https://openrouter.ai/models). Users can pass any text generation parameters valid for the OpenRouter chat completion API directly to this component using the `generation_kwargs` parameter in `__init__` or the `generation_kwargs` parameter in `run` method. Key Features and Compatibility: - **Primary Compatibility**: Designed to work seamlessly with the OpenRouter chat completion endpoint. - **Streaming Support**: Supports streaming responses from the OpenRouter chat completion endpoint. - **Customizability**: Supports all parameters supported by the OpenRouter chat completion endpoint. This component uses the ChatMessage format for structuring both input and output, ensuring coherent and contextually relevant responses in chat-based text generation scenarios. Details on the ChatMessage format can be found in the [Haystack docs](https://docs.haystack.deepset.ai/docs/chatmessage) For more details on the parameters supported by the OpenRouter API, refer to the [OpenRouter API Docs](https://openrouter.ai/docs/quickstart). Usage example: ```python from haystack_integrations.components.generators.openrouter import OpenRouterChatGenerator from haystack.dataclasses import ChatMessage messages = [ChatMessage.from_user("What's Natural Language Processing?")] client = OpenRouterChatGenerator() response = client.run(messages) print(response) >>{'replies': [ChatMessage(_content='Natural Language Processing (NLP) is a branch of artificial intelligence >>that focuses on enabling computers to understand, interpret, and generate human language in a way that is >>meaningful and useful.', _role=, _name=None, >>_meta={'model': 'openai/gpt-4o-mini', 'index': 0, 'finish_reason': 'stop', >>'usage': {'prompt_tokens': 15, 'completion_tokens': 36, 'total_tokens': 51}})]} ``` #### OpenRouterChatGenerator.\_\_init\_\_ ```python def __init__(*, api_key: Secret = Secret.from_env_var("OPENROUTER_API_KEY"), model: str = "openai/gpt-4o-mini", streaming_callback: Optional[StreamingCallbackT] = None, api_base_url: Optional[str] = "https://openrouter.ai/api/v1", generation_kwargs: Optional[Dict[str, Any]] = None, tools: Optional[ToolsType] = None, timeout: Optional[float] = None, extra_headers: Optional[Dict[str, Any]] = None, max_retries: Optional[int] = None, http_client_kwargs: Optional[Dict[str, Any]] = None) ``` Creates an instance of OpenRouterChatGenerator. Unless specified otherwise, the default model is `openai/gpt-4o-mini`. **Arguments**: - `api_key`: The OpenRouter API key. - `model`: The name of the OpenRouter chat completion model to use. - `streaming_callback`: A callback function that is called when a new token is received from the stream. The callback function accepts StreamingChunk as an argument. - `api_base_url`: The OpenRouter API Base url. For more details, see OpenRouter [docs](https://openrouter.ai/docs/quickstart). - `generation_kwargs`: Other parameters to use for the model. These parameters are all sent directly to the OpenRouter endpoint. See [OpenRouter API docs](https://openrouter.ai/docs/quickstart) for more details. Some of the supported parameters: - `max_tokens`: The maximum number of tokens the output text can have. - `temperature`: What sampling temperature to use. Higher values mean the model will take more risks. Try 0.9 for more creative applications and 0 (argmax sampling) for ones with a well-defined answer. - `top_p`: An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. - `stream`: Whether to stream back partial progress. If set, tokens will be sent as data-only server-sent events as they become available, with the stream terminated by a data: [DONE] message. - `safe_prompt`: Whether to inject a safety prompt before all conversations. - `random_seed`: The seed to use for random sampling. - `response_format`: A JSON schema or a Pydantic model that enforces the structure of the model's response. If provided, the output will always be validated against this format (unless the model returns a tool call). For details, see the [OpenAI Structured Outputs documentation](https://platform.openai.com/docs/guides/structured-outputs). Notes: - This parameter accepts Pydantic models and JSON schemas for latest models starting from GPT-4o. - For structured outputs with streaming, the `response_format` must be a JSON schema and not a Pydantic model. - `tools`: A list of tools or a Toolset for which the model can prepare calls. This parameter can accept either a list of `Tool` objects or a `Toolset` instance. - `timeout`: The timeout for the OpenRouter API call. - `extra_headers`: Additional HTTP headers to include in requests to the OpenRouter API. This can be useful for adding site URL or title for rankings on openrouter.ai For more details, see OpenRouter [docs](https://openrouter.ai/docs/quickstart). - `max_retries`: Maximum number of retries to contact OpenAI after an internal error. If not set, it defaults to either the `OPENAI_MAX_RETRIES` environment variable, or set to 5. - `http_client_kwargs`: A dictionary of keyword arguments to configure a custom `httpx.Client`or `httpx.AsyncClient`. For more information, see the [HTTPX documentation](https://www.python-httpx.org/api/`client`). #### OpenRouterChatGenerator.to\_dict ```python def to_dict() -> Dict[str, Any] ``` Serialize this component to a dictionary. **Returns**: The serialized component as a dictionary.