from haystack import Pipeline from haystack.components.converters import PyPDFToDocument, TextFileToDocument from haystack.components.embedders import SentenceTransformersDocumentEmbedder, SentenceTransformersTextEmbedder from haystack.components.preprocessors import DocumentCleaner, DocumentSplitter from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever from haystack.components.routers import FileTypeRouter from haystack.components.joiners import DocumentJoiner from haystack.components.writers import DocumentWriter from haystack.dataclasses import Document from haystack.document_stores.in_memory import InMemoryDocumentStore from haystack.evaluation.eval import eval def test_dense_doc_search_pipeline(samples_path): # Create the indexing pipeline indexing_pipeline = Pipeline() indexing_pipeline.add_component( instance=FileTypeRouter(mime_types=["text/plain", "application/pdf"]), name="file_type_router" ) indexing_pipeline.add_component(instance=TextFileToDocument(), name="text_file_converter") indexing_pipeline.add_component(instance=PyPDFToDocument(), name="pdf_file_converter") indexing_pipeline.add_component(instance=DocumentJoiner(), name="joiner") indexing_pipeline.add_component(instance=DocumentCleaner(), name="cleaner") indexing_pipeline.add_component( instance=DocumentSplitter(split_by="sentence", split_length=250, split_overlap=30), name="splitter" ) indexing_pipeline.add_component( instance=SentenceTransformersDocumentEmbedder(model="sentence-transformers/all-MiniLM-L6-v2"), name="embedder" ) indexing_pipeline.add_component(instance=DocumentWriter(document_store=InMemoryDocumentStore()), name="writer") indexing_pipeline.connect("file_type_router.text/plain", "text_file_converter.sources") indexing_pipeline.connect("file_type_router.application/pdf", "pdf_file_converter.sources") indexing_pipeline.connect("text_file_converter.documents", "joiner.documents") indexing_pipeline.connect("pdf_file_converter.documents", "joiner.documents") indexing_pipeline.connect("joiner.documents", "cleaner.documents") indexing_pipeline.connect("cleaner.documents", "splitter.documents") indexing_pipeline.connect("splitter.documents", "embedder.documents") indexing_pipeline.connect("embedder.documents", "writer.documents") indexing_pipeline.run({"file_type_router": {"sources": list(samples_path.iterdir())}}) filled_document_store = indexing_pipeline.get_component("writer").document_store # Create the querying pipeline query_pipeline = Pipeline() query_pipeline.add_component( instance=SentenceTransformersTextEmbedder(model="sentence-transformers/all-MiniLM-L6-v2"), name="text_embedder" ) query_pipeline.add_component( instance=InMemoryEmbeddingRetriever(document_store=filled_document_store, top_k=20), name="embedding_retriever" ) query_pipeline.connect("text_embedder", "embedding_retriever") inputs = [{"text_embedder": {"text": "Who lives in Rome?"}}] expected_outputs = [ { "embedding_retriever": { "documents": [ Document( id="d219162e5d0b8e5eab901e32ce0d9c12d24e5ea26a92780442fcfa560eb0b7d6", content="My name is Giorgio and I live in Rome.", meta={ "file_path": "/home/ashwin/data_science/0ashwin/opensource/haystack/e2e/samples/doc_1.txt", "source_id": "0366ae1654f4573564e29184cd4a2232286a93f4f25d6790ce703ae7d4d7d63c", }, score=0.627746287158654, ), Document( id="2dcf2bc0307ba21fbb7e97a307d987a05297e577a44f170081acdbab9fc4b95f", content="A sample PDF file History and standardizationFormat (PDF) Adobe Systems made the PDF specification ava...", meta={"source_id": "ec1ac6c430ecd0cc74ae56f3e2d84f93fef3f5393de6901fe8aa01e494ebcdbe"}, score=-0.060180130727963355, ), ] } } ] eval_result = eval(query_pipeline, inputs=inputs, expected_outputs=expected_outputs) assert eval_result.inputs == inputs assert eval_result.expected_outputs == expected_outputs assert len(eval_result.outputs) == len(expected_outputs) == len(inputs) assert eval_result.runnable.to_dict() == query_pipeline.to_dict()