import os import pytest from openai import OpenAIError from haystack.components.generators.chat import GPTChatGenerator from haystack.components.generators.utils import default_streaming_callback from haystack.dataclasses import ChatMessage, StreamingChunk @pytest.fixture def chat_messages(): return [ ChatMessage.from_system("You are a helpful assistant"), ChatMessage.from_user("What's the capital of France"), ] class TestGPTChatGenerator: def test_init_default(self): component = GPTChatGenerator(api_key="test-api-key") assert component.client.api_key == "test-api-key" assert component.model_name == "gpt-3.5-turbo" assert component.streaming_callback is None assert not component.generation_kwargs def test_init_fail_wo_api_key(self, monkeypatch): monkeypatch.delenv("OPENAI_API_KEY", raising=False) with pytest.raises(OpenAIError): GPTChatGenerator() def test_init_with_parameters(self): component = GPTChatGenerator( api_key="test-api-key", model_name="gpt-4", streaming_callback=default_streaming_callback, api_base_url="test-base-url", generation_kwargs={"max_tokens": 10, "some_test_param": "test-params"}, ) assert component.client.api_key == "test-api-key" assert component.model_name == "gpt-4" assert component.streaming_callback is default_streaming_callback assert component.generation_kwargs == {"max_tokens": 10, "some_test_param": "test-params"} def test_to_dict_default(self): component = GPTChatGenerator(api_key="test-api-key") data = component.to_dict() assert data == { "type": "haystack.components.generators.chat.openai.GPTChatGenerator", "init_parameters": { "model_name": "gpt-3.5-turbo", "organization": None, "streaming_callback": None, "api_base_url": None, "generation_kwargs": {}, }, } def test_to_dict_with_parameters(self): component = GPTChatGenerator( api_key="test-api-key", model_name="gpt-4", streaming_callback=default_streaming_callback, api_base_url="test-base-url", generation_kwargs={"max_tokens": 10, "some_test_param": "test-params"}, ) data = component.to_dict() assert data == { "type": "haystack.components.generators.chat.openai.GPTChatGenerator", "init_parameters": { "model_name": "gpt-4", "organization": None, "api_base_url": "test-base-url", "streaming_callback": "haystack.components.generators.utils.default_streaming_callback", "generation_kwargs": {"max_tokens": 10, "some_test_param": "test-params"}, }, } def test_to_dict_with_lambda_streaming_callback(self): component = GPTChatGenerator( api_key="test-api-key", model_name="gpt-4", streaming_callback=lambda x: x, api_base_url="test-base-url", generation_kwargs={"max_tokens": 10, "some_test_param": "test-params"}, ) data = component.to_dict() assert data == { "type": "haystack.components.generators.chat.openai.GPTChatGenerator", "init_parameters": { "model_name": "gpt-4", "organization": None, "api_base_url": "test-base-url", "streaming_callback": "chat.test_openai.", "generation_kwargs": {"max_tokens": 10, "some_test_param": "test-params"}, }, } def test_from_dict(self): data = { "type": "haystack.components.generators.chat.openai.GPTChatGenerator", "init_parameters": { "model_name": "gpt-4", "api_base_url": "test-base-url", "streaming_callback": "haystack.components.generators.utils.default_streaming_callback", "generation_kwargs": {"max_tokens": 10, "some_test_param": "test-params"}, }, } component = GPTChatGenerator.from_dict(data) assert component.model_name == "gpt-4" assert component.streaming_callback is default_streaming_callback assert component.api_base_url == "test-base-url" assert component.generation_kwargs == {"max_tokens": 10, "some_test_param": "test-params"} def test_from_dict_fail_wo_env_var(self, monkeypatch): monkeypatch.delenv("OPENAI_API_KEY", raising=False) data = { "type": "haystack.components.generators.chat.openai.GPTChatGenerator", "init_parameters": { "model_name": "gpt-4", "organization": None, "api_base_url": "test-base-url", "streaming_callback": "haystack.components.generators.utils.default_streaming_callback", "generation_kwargs": {"max_tokens": 10, "some_test_param": "test-params"}, }, } with pytest.raises(OpenAIError): GPTChatGenerator.from_dict(data) def test_run(self, chat_messages, mock_chat_completion): component = GPTChatGenerator() response = component.run(chat_messages) # check that the component returns the correct ChatMessage response assert isinstance(response, dict) assert "replies" in response assert isinstance(response["replies"], list) assert len(response["replies"]) == 1 assert [isinstance(reply, ChatMessage) for reply in response["replies"]] def test_run_with_params(self, chat_messages, mock_chat_completion): component = GPTChatGenerator(generation_kwargs={"max_tokens": 10, "temperature": 0.5}) response = component.run(chat_messages) # check that the component calls the OpenAI API with the correct parameters _, kwargs = mock_chat_completion.call_args assert kwargs["max_tokens"] == 10 assert kwargs["temperature"] == 0.5 # check that the component returns the correct response assert isinstance(response, dict) assert "replies" in response assert isinstance(response["replies"], list) assert len(response["replies"]) == 1 assert [isinstance(reply, ChatMessage) for reply in response["replies"]] def test_run_with_params_streaming(self, chat_messages, mock_chat_completion_chunk): streaming_callback_called = False def streaming_callback(chunk: StreamingChunk) -> None: nonlocal streaming_callback_called streaming_callback_called = True component = GPTChatGenerator(streaming_callback=streaming_callback) response = component.run(chat_messages) # check we called the streaming callback assert streaming_callback_called # check that the component still returns the correct response assert isinstance(response, dict) assert "replies" in response assert isinstance(response["replies"], list) assert len(response["replies"]) == 1 assert [isinstance(reply, ChatMessage) for reply in response["replies"]] assert "Hello" in response["replies"][0].content # see mock_chat_completion_chunk def test_check_abnormal_completions(self, caplog): component = GPTChatGenerator(api_key="test-api-key") messages = [ ChatMessage.from_assistant( "", meta={"finish_reason": "content_filter" if i % 2 == 0 else "length", "index": i} ) for i, _ in enumerate(range(4)) ] for m in messages: component._check_finish_reason(m) # check truncation warning message_template = ( "The completion for index {index} has been truncated before reaching a natural stopping point. " "Increase the max_tokens parameter to allow for longer completions." ) for index in [1, 3]: assert caplog.records[index].message == message_template.format(index=index) # check content filter warning message_template = "The completion for index {index} has been truncated due to the content filter." for index in [0, 2]: assert caplog.records[index].message == message_template.format(index=index) @pytest.mark.skipif( not os.environ.get("OPENAI_API_KEY", None), reason="Export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.", ) @pytest.mark.integration def test_live_run(self): chat_messages = [ChatMessage.from_user("What's the capital of France")] component = GPTChatGenerator(api_key=os.environ.get("OPENAI_API_KEY"), generation_kwargs={"n": 1}) results = component.run(chat_messages) assert len(results["replies"]) == 1 message: ChatMessage = results["replies"][0] assert "Paris" in message.content assert "gpt-3.5" in message.meta["model"] assert message.meta["finish_reason"] == "stop" @pytest.mark.skipif( not os.environ.get("OPENAI_API_KEY", None), reason="Export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.", ) @pytest.mark.integration def test_live_run_wrong_model(self, chat_messages): component = GPTChatGenerator(model_name="something-obviously-wrong", api_key=os.environ.get("OPENAI_API_KEY")) with pytest.raises(OpenAIError): component.run(chat_messages) @pytest.mark.skipif( not os.environ.get("OPENAI_API_KEY", None), reason="Export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.", ) @pytest.mark.integration def test_live_run_streaming(self): class Callback: def __init__(self): self.responses = "" self.counter = 0 def __call__(self, chunk: StreamingChunk) -> None: self.counter += 1 self.responses += chunk.content if chunk.content else "" callback = Callback() component = GPTChatGenerator(streaming_callback=callback) results = component.run([ChatMessage.from_user("What's the capital of France?")]) assert len(results["replies"]) == 1 message: ChatMessage = results["replies"][0] assert "Paris" in message.content assert "gpt-3.5" in message.meta["model"] assert message.meta["finish_reason"] == "stop" assert callback.counter > 1 assert "Paris" in callback.responses