import os from typing import List import pytest from openai import OpenAIError from haystack.components.generators import GPTGenerator from haystack.components.generators.utils import default_streaming_callback from haystack.dataclasses import StreamingChunk, ChatMessage class TestGPTGenerator: def test_init_default(self): component = GPTGenerator(api_key="test-api-key") assert component.client.api_key == "test-api-key" assert component.model_name == "gpt-3.5-turbo" assert component.streaming_callback is None assert not component.generation_kwargs def test_init_fail_wo_api_key(self, monkeypatch): monkeypatch.delenv("OPENAI_API_KEY", raising=False) with pytest.raises(OpenAIError): GPTGenerator() def test_init_with_parameters(self): component = GPTGenerator( api_key="test-api-key", model_name="gpt-4", streaming_callback=default_streaming_callback, api_base_url="test-base-url", generation_kwargs={"max_tokens": 10, "some_test_param": "test-params"}, ) assert component.client.api_key == "test-api-key" assert component.model_name == "gpt-4" assert component.streaming_callback is default_streaming_callback assert component.generation_kwargs == {"max_tokens": 10, "some_test_param": "test-params"} def test_to_dict_default(self): component = GPTGenerator(api_key="test-api-key") data = component.to_dict() assert data == { "type": "haystack.components.generators.openai.GPTGenerator", "init_parameters": { "model_name": "gpt-3.5-turbo", "streaming_callback": None, "system_prompt": None, "api_base_url": None, "generation_kwargs": {}, }, } def test_to_dict_with_parameters(self): component = GPTGenerator( api_key="test-api-key", model_name="gpt-4", streaming_callback=default_streaming_callback, api_base_url="test-base-url", generation_kwargs={"max_tokens": 10, "some_test_param": "test-params"}, ) data = component.to_dict() assert data == { "type": "haystack.components.generators.openai.GPTGenerator", "init_parameters": { "model_name": "gpt-4", "system_prompt": None, "api_base_url": "test-base-url", "streaming_callback": "haystack.components.generators.utils.default_streaming_callback", "generation_kwargs": {"max_tokens": 10, "some_test_param": "test-params"}, }, } def test_to_dict_with_lambda_streaming_callback(self): component = GPTGenerator( api_key="test-api-key", model_name="gpt-4", streaming_callback=lambda x: x, api_base_url="test-base-url", generation_kwargs={"max_tokens": 10, "some_test_param": "test-params"}, ) data = component.to_dict() assert data == { "type": "haystack.components.generators.openai.GPTGenerator", "init_parameters": { "model_name": "gpt-4", "system_prompt": None, "api_base_url": "test-base-url", "streaming_callback": "test_openai.", "generation_kwargs": {"max_tokens": 10, "some_test_param": "test-params"}, }, } def test_from_dict(self, monkeypatch): monkeypatch.setenv("OPENAI_API_KEY", "fake-api-key") data = { "type": "haystack.components.generators.openai.GPTGenerator", "init_parameters": { "model_name": "gpt-4", "system_prompt": None, "api_base_url": "test-base-url", "streaming_callback": "haystack.components.generators.utils.default_streaming_callback", "generation_kwargs": {"max_tokens": 10, "some_test_param": "test-params"}, }, } component = GPTGenerator.from_dict(data) assert component.model_name == "gpt-4" assert component.streaming_callback is default_streaming_callback assert component.api_base_url == "test-base-url" assert component.generation_kwargs == {"max_tokens": 10, "some_test_param": "test-params"} def test_from_dict_fail_wo_env_var(self, monkeypatch): monkeypatch.delenv("OPENAI_API_KEY", raising=False) data = { "type": "haystack.components.generators.openai.GPTGenerator", "init_parameters": { "model_name": "gpt-4", "api_base_url": "test-base-url", "streaming_callback": "haystack.components.generators.utils.default_streaming_callback", "generation_kwargs": {"max_tokens": 10, "some_test_param": "test-params"}, }, } with pytest.raises(OpenAIError): GPTGenerator.from_dict(data) def test_run(self, mock_chat_completion): component = GPTGenerator(api_key="test-api-key") response = component.run("What's Natural Language Processing?") # check that the component returns the correct ChatMessage response assert isinstance(response, dict) assert "replies" in response assert isinstance(response["replies"], list) assert len(response["replies"]) == 1 assert [isinstance(reply, str) for reply in response["replies"]] def test_run_with_params_streaming(self, mock_chat_completion_chunk): streaming_callback_called = False def streaming_callback(chunk: StreamingChunk) -> None: nonlocal streaming_callback_called streaming_callback_called = True component = GPTGenerator(streaming_callback=streaming_callback) response = component.run("Come on, stream!") # check we called the streaming callback assert streaming_callback_called # check that the component still returns the correct response assert isinstance(response, dict) assert "replies" in response assert isinstance(response["replies"], list) assert len(response["replies"]) == 1 assert "Hello" in response["replies"][0] # see mock_chat_completion_chunk def test_run_with_params(self, mock_chat_completion): component = GPTGenerator(api_key="test-api-key", generation_kwargs={"max_tokens": 10, "temperature": 0.5}) response = component.run("What's Natural Language Processing?") # check that the component calls the OpenAI API with the correct parameters _, kwargs = mock_chat_completion.call_args assert kwargs["max_tokens"] == 10 assert kwargs["temperature"] == 0.5 # check that the component returns the correct response assert isinstance(response, dict) assert "replies" in response assert isinstance(response["replies"], list) assert len(response["replies"]) == 1 assert [isinstance(reply, str) for reply in response["replies"]] def test_check_abnormal_completions(self, caplog): component = GPTGenerator(api_key="test-api-key") # underlying implementation uses ChatMessage objects so we have to use them here messages: List[ChatMessage] = [] for i, _ in enumerate(range(4)): message = ChatMessage.from_assistant("Hello") metadata = {"finish_reason": "content_filter" if i % 2 == 0 else "length", "index": i} message.meta.update(metadata) messages.append(message) for m in messages: component._check_finish_reason(m) # check truncation warning message_template = ( "The completion for index {index} has been truncated before reaching a natural stopping point. " "Increase the max_tokens parameter to allow for longer completions." ) for index in [1, 3]: assert caplog.records[index].message == message_template.format(index=index) # check content filter warning message_template = "The completion for index {index} has been truncated due to the content filter." for index in [0, 2]: assert caplog.records[index].message == message_template.format(index=index) @pytest.mark.skipif( not os.environ.get("OPENAI_API_KEY", None), reason="Export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.", ) @pytest.mark.integration def test_live_run(self): component = GPTGenerator(api_key=os.environ.get("OPENAI_API_KEY")) results = component.run("What's the capital of France?") assert len(results["replies"]) == 1 assert len(results["meta"]) == 1 response: str = results["replies"][0] assert "Paris" in response metadata = results["meta"][0] assert "gpt-3.5" in metadata["model"] assert metadata["finish_reason"] == "stop" assert "usage" in metadata assert "prompt_tokens" in metadata["usage"] and metadata["usage"]["prompt_tokens"] > 0 assert "completion_tokens" in metadata["usage"] and metadata["usage"]["completion_tokens"] > 0 assert "total_tokens" in metadata["usage"] and metadata["usage"]["total_tokens"] > 0 @pytest.mark.skipif( not os.environ.get("OPENAI_API_KEY", None), reason="Export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.", ) @pytest.mark.integration def test_live_run_wrong_model(self): component = GPTGenerator(model_name="something-obviously-wrong", api_key=os.environ.get("OPENAI_API_KEY")) with pytest.raises(OpenAIError): component.run("Whatever") @pytest.mark.skipif( not os.environ.get("OPENAI_API_KEY", None), reason="Export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.", ) @pytest.mark.integration def test_live_run_streaming(self): class Callback: def __init__(self): self.responses = "" self.counter = 0 def __call__(self, chunk: StreamingChunk) -> None: self.counter += 1 self.responses += chunk.content if chunk.content else "" callback = Callback() component = GPTGenerator(os.environ.get("OPENAI_API_KEY"), streaming_callback=callback) results = component.run("What's the capital of France?") assert len(results["replies"]) == 1 assert len(results["meta"]) == 1 response: str = results["replies"][0] assert "Paris" in response metadata = results["meta"][0] assert "gpt-3.5" in metadata["model"] assert metadata["finish_reason"] == "stop" # unfortunately, the usage is not available for streaming calls # we keep the key in the metadata for compatibility assert "usage" in metadata and len(metadata["usage"]) == 0 assert callback.counter > 1 assert "Paris" in callback.responses