{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Task: Question Answering for Game of Thrones\n", "\n", "\n", "\n", "Question Answering can be used in a variety of use cases. A very common one: Using it to navigate through complex knowledge bases or long documents (\"search setting\").\n", "\n", "A \"knowledge base\" could for example be your website, an internal wiki or a collection of financial reports. \n", "In this tutorial we will work on a slightly different domain: \"Game of Thrones\". \n", "\n", "Let's see how we can use a bunch of wikipedia articles to answer a variety of questions about the \n", "marvellous seven kingdoms... \n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "pycharm": { "is_executing": false } }, "outputs": [], "source": [ "from farm_haystack.reader.adaptive_model import FARMReader\n", "from farm_haystack.retriever.tfidf import TfidfRetriever\n", "from farm_haystack import Finder\n", "from farm_haystack.indexing.io import write_documents_to_db, fetch_archive_from_http\n", "from farm_haystack.indexing.cleaning import clean_wiki_text\n", "from farm_haystack.utils import print_answers" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Indexing & cleaning documents" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "pycharm": { "is_executing": false } }, "outputs": [], "source": [ "# Init a database (default: sqllite)\n", "from farm_haystack.database import db\n", "db.create_all()\n", "\n", "# Let's first get some documents that we want to query\n", "# Here: 517 Wikipedia articles for Game of Thrones\n", "doc_dir = \"data/article_txt_got\"\n", "s3_url = \"https://s3.eu-central-1.amazonaws.com/deepset.ai-farm-qa/datasets/documents/wiki_gameofthrones_txt.zip\"\n", "fetch_archive_from_http(url=s3_url, output_dir=doc_dir)\n", "\n", "# Now, let's write the docs to our DB. \n", "# You can supply a cleaning function that is applied to each doc (e.g. to remove footers)\n", "# It must take a str as input, and return a str.\n", "write_documents_to_db(document_dir=doc_dir, clean_func=clean_wiki_text)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Initalize Reader, Retriever & Finder" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "pycharm": { "is_executing": false, "name": "#%%\n" } }, "outputs": [], "source": [ "# A retriever identifies the k most promising chunks of text that might contain the answer for our question\n", "# Retrievers use some simple but fast algorithm, here: TF-IDF\n", "retriever = TfidfRetriever()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "pycharm": { "is_executing": false } }, "outputs": [], "source": [ "# A reader scans the text chunks in detail and extracts the k best answers\n", "# Reader use more powerful but slower deep learning models, here: a BERT QA model trained via FARM on Squad 2.0\n", "reader = FARMReader(model_dir=\"../FARM/saved_models/bert-english-qa-large\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "pycharm": { "is_executing": false } }, "outputs": [], "source": [ "# The Finder sticks together retriever and retriever in a pipeline to answer our actual questions \n", "finder = Finder(reader, retriever)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Voilá! Ask a question!" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "pycharm": { "is_executing": false } }, "outputs": [], "source": [ "# You can configure how many candidates the reader and retriever shall return\n", "# The higher top_k_retriever, the better (but also the slower) your answers. \n", "prediction = finder.get_answers(question=\"Who is the father of Arya Stark?\", top_k_retriever=10, top_k_reader=5)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#prediction = finder.get_answers(question=\"Who created the Dothraki vocabulary?\", top_k_reader=5)\n", "#prediction = finder.get_answers(question=\"Who is the sister of Sansa?\", top_k_reader=5)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "pycharm": { "is_executing": false, "name": "#%%\n" } }, "outputs": [], "source": [ "print_answers(prediction, details=\"minimal\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" }, "pycharm": { "stem_cell": { "cell_type": "raw", "metadata": { "collapsed": false }, "source": [] } } }, "nbformat": 4, "nbformat_minor": 2 }