import pytest from haystack.pipelines import TranslationWrapperPipeline, ExtractiveQAPipeline from haystack.schema import Answer @pytest.mark.integration @pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True) def test_extractive_qa_answers(reader, retriever_with_docs, document_store_with_docs): pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs) prediction = pipeline.run(query="Who lives in Berlin?", params={"Retriever": {"top_k": 10}, "Reader": {"top_k": 3}}) assert prediction is not None assert type(prediction["answers"][0]) == Answer assert prediction["query"] == "Who lives in Berlin?" assert prediction["answers"][0].answer == "Carla" assert prediction["answers"][0].score <= 1 assert prediction["answers"][0].score >= 0 assert prediction["answers"][0].meta["meta_field"] == "test1" assert prediction["answers"][0].context == "My name is Carla and I live in Berlin" assert len(prediction["answers"]) == 3 @pytest.mark.integration @pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True) def test_extractive_qa_answers_without_normalized_scores(reader_without_normalized_scores, retriever_with_docs): pipeline = ExtractiveQAPipeline(reader=reader_without_normalized_scores, retriever=retriever_with_docs) prediction = pipeline.run(query="Who lives in Berlin?", params={"Reader": {"top_k": 3}}) assert prediction is not None assert prediction["query"] == "Who lives in Berlin?" assert prediction["answers"][0].answer == "Carla" assert prediction["answers"][0].score <= 9 assert prediction["answers"][0].score >= 8 assert prediction["answers"][0].meta["meta_field"] == "test1" assert prediction["answers"][0].context == "My name is Carla and I live in Berlin" assert len(prediction["answers"]) == 3 @pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True) def test_extractive_qa_offsets(reader, retriever_with_docs): pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs) prediction = pipeline.run(query="Who lives in Berlin?", params={"Retriever": {"top_k": 5}}) start = prediction["answers"][0].offsets_in_context[0].start end = prediction["answers"][0].offsets_in_context[0].end assert start == 11 assert end == 16 assert prediction["answers"][0].context[start:end] == prediction["answers"][0].answer @pytest.mark.integration @pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True) def test_extractive_qa_answers_single_result(reader, retriever_with_docs): pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs) query = "testing finder" prediction = pipeline.run(query=query, params={"Retriever": {"top_k": 1}, "Reader": {"top_k": 1}}) assert prediction is not None assert len(prediction["answers"]) == 1 @pytest.mark.integration @pytest.mark.parametrize("retriever_with_docs", ["tfidf"], indirect=True) @pytest.mark.parametrize("reader", ["farm"], indirect=True) def test_extractive_qa_answers_with_translator(reader, retriever_with_docs, en_to_de_translator, de_to_en_translator): base_pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever_with_docs) pipeline = TranslationWrapperPipeline( input_translator=de_to_en_translator, output_translator=en_to_de_translator, pipeline=base_pipeline ) prediction = pipeline.run(query="Wer lebt in Berlin?", params={"Reader": {"top_k": 3}}) assert prediction is not None assert prediction["query"] == "Wer lebt in Berlin?" assert "Carla" in prediction["answers"][0].answer assert prediction["answers"][0].score <= 1 assert prediction["answers"][0].score >= 0 assert prediction["answers"][0].meta["meta_field"] == "test1" assert prediction["answers"][0].context == "My name is Carla and I live in Berlin"