import sys from pathlib import Path import os import pytest from haystack import Document from haystack.nodes.file_converter.pdf import PDFToTextConverter from haystack.nodes.preprocessor.preprocessor import PreProcessor from ..conftest import SAMPLES_PATH NLTK_TEST_MODELS = SAMPLES_PATH.absolute() / "preprocessor" / "nltk_models" TEXT = """ This is a sample sentence in paragraph_1. This is a sample sentence in paragraph_1. This is a sample sentence in paragraph_1. This is a sample sentence in paragraph_1. This is a sample sentence in paragraph_1.\f This is a sample sentence in paragraph_2. This is a sample sentence in paragraph_2. This is a sample sentence in paragraph_2. This is a sample sentence in paragraph_2. This is a sample sentence in paragraph_2. This is a sample sentence in paragraph_3. This is a sample sentence in paragraph_3. This is a sample sentence in paragraph_3. This is a sample sentence in paragraph_3. This is to trick the test with using an abbreviation\f like Dr. in the sentence. """ LEGAL_TEXT_PT = """ A Lei nº 9.514/1997, que instituiu a alienação fiduciária de bens imóveis, é norma especial e posterior ao Código de Defesa do Consumidor – CDC. Em tais circunstâncias, o inadimplemento do devedor fiduciante enseja a aplicação da regra prevista nos arts. 26 e 27 da lei especial” (REsp 1.871.911/SP, rel. Min. Nancy Andrighi, DJe 25/8/2020). A Emenda Constitucional n. 35 alterou substancialmente esse mecanismo, ao determinar, na nova redação conferida ao art. 53: “§ 3º Recebida a denúncia contra o Senador ou Deputado, por crime ocorrido após a diplomação, o Supremo Tribunal Federal dará ciência à Casa respectiva, que, por iniciativa de partido político nela representado e pelo voto da maioria de seus membros, poderá, até a decisão final, sustar o andamento da ação”. Vale ressaltar, contudo, que existem, antes do encaminhamento ao Presidente da República, os chamados autógrafos. Os autógrafos ocorrem já com o texto definitivamente aprovado pelo Plenário ou pelas comissões, quando for o caso. Os autógrafos devem reproduzir com absoluta fidelidade a redação final aprovada. O projeto aprovado será encaminhado em autógrafos ao Presidente da República. O tema encontra-se regulamentado pelo art. 200 do RICD e arts. 328 a 331 do RISF. """ @pytest.mark.parametrize("split_length_and_results", [(1, 15), (10, 2)]) def test_preprocess_sentence_split(split_length_and_results): split_length, expected_documents_count = split_length_and_results document = Document(content=TEXT) preprocessor = PreProcessor( split_length=split_length, split_overlap=0, split_by="sentence", split_respect_sentence_boundary=False ) documents = preprocessor.process(document) assert len(documents) == expected_documents_count @pytest.mark.parametrize("split_length_and_results", [(1, 15), (10, 2)]) def test_preprocess_sentence_split_custom_models_wrong_file_format(split_length_and_results): split_length, expected_documents_count = split_length_and_results document = Document(content=TEXT) preprocessor = PreProcessor( split_length=split_length, split_overlap=0, split_by="sentence", split_respect_sentence_boundary=False, tokenizer_model_folder=NLTK_TEST_MODELS / "wrong", language="en", ) documents = preprocessor.process(document) assert len(documents) == expected_documents_count @pytest.mark.parametrize("split_length_and_results", [(1, 15), (10, 2)]) def test_preprocess_sentence_split_custom_models_non_default_language(split_length_and_results): split_length, expected_documents_count = split_length_and_results document = Document(content=TEXT) preprocessor = PreProcessor( split_length=split_length, split_overlap=0, split_by="sentence", split_respect_sentence_boundary=False, language="ca", ) documents = preprocessor.process(document) assert len(documents) == expected_documents_count @pytest.mark.parametrize("split_length_and_results", [(1, 8), (8, 1)]) def test_preprocess_sentence_split_custom_models(split_length_and_results): split_length, expected_documents_count = split_length_and_results document = Document(content=LEGAL_TEXT_PT) preprocessor = PreProcessor( split_length=split_length, split_overlap=0, split_by="sentence", split_respect_sentence_boundary=False, language="pt", tokenizer_model_folder=NLTK_TEST_MODELS, ) documents = preprocessor.process(document) assert len(documents) == expected_documents_count def test_preprocess_word_split(): document = Document(content=TEXT) preprocessor = PreProcessor( split_length=10, split_overlap=0, split_by="word", split_respect_sentence_boundary=False ) documents = preprocessor.process(document) assert len(documents) == 11 preprocessor = PreProcessor(split_length=15, split_overlap=0, split_by="word", split_respect_sentence_boundary=True) documents = preprocessor.process(document) for i, doc in enumerate(documents): if i == 0: assert len(doc.content.split(" ")) == 14 assert len(doc.content.split(" ")) <= 15 or doc.content.startswith("This is to trick") assert len(documents) == 8 preprocessor = PreProcessor( split_length=40, split_overlap=10, split_by="word", split_respect_sentence_boundary=True ) documents = preprocessor.process(document) assert len(documents) == 5 preprocessor = PreProcessor(split_length=5, split_overlap=0, split_by="word", split_respect_sentence_boundary=True) documents = preprocessor.process(document) assert len(documents) == 15 @pytest.mark.parametrize("split_length_and_results", [(1, 3), (2, 2)]) def test_preprocess_passage_split(split_length_and_results): split_length, expected_documents_count = split_length_and_results document = Document(content=TEXT) preprocessor = PreProcessor( split_length=split_length, split_overlap=0, split_by="passage", split_respect_sentence_boundary=False ) documents = preprocessor.process(document) assert len(documents) == expected_documents_count @pytest.mark.skipif(sys.platform in ["win32", "cygwin"], reason="FIXME Footer not detected correctly on Windows") def test_clean_header_footer(): converter = PDFToTextConverter() document = converter.convert( file_path=Path(SAMPLES_PATH / "pdf" / "sample_pdf_2.pdf") ) # file contains header/footer preprocessor = PreProcessor(clean_header_footer=True, split_by=None) documents = preprocessor.process(document) assert len(documents) == 1 assert "This is a header." not in documents[0].content assert "footer" not in documents[0].content def test_remove_substrings(): document = Document(content="This is a header. Some additional text. wiki. Some emoji ✨ 🪲 Weird whitespace\b\b\b.") # check that the file contains the substrings we are about to remove assert "This is a header." in document.content assert "wiki" in document.content assert "🪲" in document.content assert "whitespace" in document.content assert "✨" in document.content preprocessor = PreProcessor(remove_substrings=["This is a header.", "wiki", "🪲"]) documents = preprocessor.process(document) assert "This is a header." not in documents[0].content assert "wiki" not in documents[0].content assert "🪲" not in documents[0].content assert "whitespace" in documents[0].content assert "✨" in documents[0].content def test_id_hash_keys_from_pipeline_params(): document_1 = Document(content="This is a document.", meta={"key": "a"}) document_2 = Document(content="This is a document.", meta={"key": "b"}) assert document_1.id == document_2.id preprocessor = PreProcessor(split_length=2, split_respect_sentence_boundary=False) output, _ = preprocessor.run(documents=[document_1, document_2], id_hash_keys=["content", "meta"]) documents = output["documents"] unique_ids = set(d.id for d in documents) assert len(documents) == 4 assert len(unique_ids) == 4 # test_input is a tuple consisting of the parameters for split_length, split_overlap and split_respect_sentence_boundary # and the expected index in the output list of Documents where the page number changes from 1 to 2 @pytest.mark.parametrize("test_input", [(10, 0, True, 5), (10, 0, False, 4), (10, 5, True, 6), (10, 5, False, 7)]) def test_page_number_extraction(test_input): split_length, overlap, resp_sent_boundary, exp_doc_index = test_input preprocessor = PreProcessor( add_page_number=True, split_by="word", split_length=split_length, split_overlap=overlap, split_respect_sentence_boundary=resp_sent_boundary, ) document = Document(content=TEXT) documents = preprocessor.process(document) for idx, doc in enumerate(documents): if idx < exp_doc_index: assert doc.meta["page"] == 1 else: assert doc.meta["page"] == 2 def test_substitute_page_break(): # Page breaks at the end of sentences should be replaced by "[NEW_PAGE]", while page breaks in between of # sentences should not be replaced. result = PreProcessor._substitute_page_breaks(TEXT) assert result[211:221] == "[NEW_PAGE]" assert result[654] == "\f"