import logging import subprocess import time from haystack import Finder from haystack.database.elasticsearch import ElasticsearchDocumentStore from haystack.indexing.cleaning import clean_wiki_text from haystack.indexing.utils import convert_files_to_dicts, fetch_archive_from_http from haystack.reader.farm import FARMReader from haystack.reader.transformers import TransformersReader from haystack.utils import print_answers from haystack.retriever.sparse import ElasticsearchRetriever from haystack.retriever.dense import DensePassageRetriever LAUNCH_ELASTICSEARCH = False # Start an Elasticsearch server # You can start Elasticsearch on your local machine instance using Docker. If Docker is not readily available in # your environment (eg., in Colab notebooks), then you can manually download and execute Elasticsearch from source. if LAUNCH_ELASTICSEARCH: logging.info("Starting Elasticsearch ...") status = subprocess.run( ['docker run -d -p 9200:9200 -e "discovery.type=single-node" elasticsearch:7.6.2'], shell=True ) if status.returncode: raise Exception("Failed to launch Elasticsearch. If you want to connect to an existing Elasticsearch instance" "then set LAUNCH_ELASTICSEARCH in the script to False.") time.sleep(15) # Connect to Elasticsearch document_store = ElasticsearchDocumentStore(host="localhost", username="", password="", index="document", embedding_dim=768, embedding_field="embedding") # ## Cleaning & indexing documents # Let's first get some documents that we want to query doc_dir = "data/article_txt_got" s3_url = "https://s3.eu-central-1.amazonaws.com/deepset.ai-farm-qa/datasets/documents/wiki_gameofthrones_txt.zip" fetch_archive_from_http(url=s3_url, output_dir=doc_dir) # convert files to dicts containing documents that can be indexed to our datastore dicts = convert_files_to_dicts(dir_path=doc_dir, clean_func=clean_wiki_text, split_paragraphs=True) # Now, let's write the docs to our DB. document_store.write_documents(dicts[:16]) ### Retriever retriever = DensePassageRetriever(document_store=document_store, embedding_model="dpr-bert-base-nq", do_lower_case=True, gpu=True) document_store.update_embeddings(retriever) ### Reader # Load a local model or any of the QA models on # Hugging Face's model hub (https://huggingface.co/models) reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2", use_gpu=True) ### Finder # The Finder sticks together reader and retriever in a pipeline to answer our actual questions. finder = Finder(reader, retriever) ### VoilĂ ! Ask a question! # You can configure how many candidates the reader and retriever shall return # The higher top_k_retriever, the better (but also the slower) your answers. prediction = finder.get_answers(question="Who is the father of Arya Stark?", top_k_retriever=10, top_k_reader=5) # prediction = finder.get_answers(question="Who created the Dothraki vocabulary?", top_k_reader=5) # prediction = finder.get_answers(question="Who is the sister of Sansa?", top_k_reader=5) print_answers(prediction, details="minimal")