# SPDX-FileCopyrightText: 2022-present deepset GmbH # # SPDX-License-Identifier: Apache-2.0 import pytest from transformers import AutoTokenizer from haystack.dataclasses import ChatMessage, ChatRole def test_from_assistant_with_valid_content(): content = "Hello, how can I assist you?" message = ChatMessage.from_assistant(content) assert message.content == content assert message.role == ChatRole.ASSISTANT def test_from_user_with_valid_content(): content = "I have a question." message = ChatMessage.from_user(content) assert message.content == content assert message.role == ChatRole.USER def test_from_system_with_valid_content(): content = "System message." message = ChatMessage.from_system(content) assert message.content == content assert message.role == ChatRole.SYSTEM def test_with_empty_content(): message = ChatMessage.from_user("") assert message.content == "" def test_from_function_with_empty_name(): content = "Function call" message = ChatMessage.from_function(content, "") assert message.content == content assert message.name == "" def test_to_openai_format(): message = ChatMessage.from_system("You are good assistant") assert message.to_openai_format() == {"role": "system", "content": "You are good assistant"} message = ChatMessage.from_user("I have a question") assert message.to_openai_format() == {"role": "user", "content": "I have a question"} message = ChatMessage.from_function("Function call", "function_name") assert message.to_openai_format() == {"role": "function", "content": "Function call", "name": "function_name"} @pytest.mark.integration def test_apply_chat_templating_on_chat_message(): messages = [ChatMessage.from_system("You are good assistant"), ChatMessage.from_user("I have a question")] tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta") formatted_messages = [m.to_openai_format() for m in messages] tokenized_messages = tokenizer.apply_chat_template(formatted_messages, tokenize=False) assert tokenized_messages == "<|system|>\nYou are good assistant\n<|user|>\nI have a question\n" @pytest.mark.integration def test_apply_custom_chat_templating_on_chat_message(): anthropic_template = ( "{%- for message in messages %}" "{%- if message.role == 'user' %}\n\nHuman: {{ message.content.strip() }}" "{%- elif message.role == 'assistant' %}\n\nAssistant: {{ message.content.strip() }}" "{%- elif message.role == 'function' %}{{ raise('anthropic does not support function calls.') }}" "{%- elif message.role == 'system' and loop.index == 1 %}{{ message.content }}" "{%- else %}{{ raise('Invalid message role: ' + message.role) }}" "{%- endif %}" "{%- endfor %}" "\n\nAssistant:" ) messages = [ChatMessage.from_system("You are good assistant"), ChatMessage.from_user("I have a question")] # could be any tokenizer, let's use the one we already likely have in cache tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta") formatted_messages = [m.to_openai_format() for m in messages] tokenized_messages = tokenizer.apply_chat_template( formatted_messages, chat_template=anthropic_template, tokenize=False ) assert tokenized_messages == "You are good assistant\nHuman: I have a question\nAssistant:" def test_to_dict(): message = ChatMessage.from_user("content") message.meta["some"] = "some" assert message.to_dict() == {"content": "content", "role": "user", "name": None, "meta": {"some": "some"}} def test_from_dict(): assert ChatMessage.from_dict(data={"content": "text", "role": "user", "name": None}) == ChatMessage( content="text", role=ChatRole("user"), name=None, meta={} ) def test_from_dict_with_meta(): assert ChatMessage.from_dict( data={"content": "text", "role": "user", "name": None, "meta": {"something": "something"}} ) == ChatMessage(content="text", role=ChatRole("user"), name=None, meta={"something": "something"})