import streamlit as st from annotated_text import annotated_text from utils import haystack_query def annotate_answer(answer, context): start_idx = context.find(answer) end_idx = start_idx + len(answer) annotated_text(context[:start_idx], (answer, "ANSWER", "#8ef"), context[end_idx:]) st.write("# Haystack Demo") st.sidebar.header("Options") top_k_reader = st.sidebar.slider("Max. number of answers", min_value=1, max_value=10, value=3, step=1) top_k_retriever = st.sidebar.slider( "Max. number of documents from retriever", min_value=1, max_value=10, value=3, step=1 ) question = st.text_input("Please provide your query:", value="Who is the father of Arya Starck?") run_query = st.button("Run") debug = st.sidebar.checkbox("Show debug info") if run_query: with st.spinner( "Performing neural search on documents... 🧠 \n " "Do you want to optimize speed or accuracy? \n" "Check out the docs: https://haystack.deepset.ai/docs/latest/optimizationmd " ): results, raw_json = haystack_query(question, top_k_reader=top_k_reader, top_k_retriever=top_k_retriever) st.write("## Retrieved answers:") for result in results: annotate_answer(result["answer"], result["context"]) "**Relevance:** ", result["relevance"], "**Source:** ", result["source"] if debug: st.subheader("REST API JSON response") st.write(raw_json)