import math from haystack.database.base import Document from haystack.reader.base import BaseReader from haystack.reader.farm import FARMReader from haystack.reader.transformers import TransformersReader def test_reader_basic(reader): assert reader is not None assert isinstance(reader, BaseReader) def test_output(prediction): assert prediction is not None assert prediction["question"] == "Who lives in Berlin?" assert prediction["answers"][0]["answer"] == "Carla" assert prediction["answers"][0]["offset_start"] == 11 assert prediction["answers"][0]["offset_end"] == 16 assert prediction["answers"][0]["probability"] <= 1 assert prediction["answers"][0]["probability"] >= 0 assert prediction["answers"][0]["context"] == "My name is Carla and I live in Berlin" assert prediction["answers"][0]["document_id"] == "filename1" assert len(prediction["answers"]) == 5 def test_no_answer_output(no_answer_prediction): assert no_answer_prediction is not None assert no_answer_prediction["question"] == "What is the meaning of life?" assert math.isclose(no_answer_prediction["no_ans_gap"], -14.4729533, rel_tol=0.0001) assert no_answer_prediction["answers"][0]["answer"] is None assert no_answer_prediction["answers"][0]["offset_start"] == 0 assert no_answer_prediction["answers"][0]["offset_end"] == 0 assert no_answer_prediction["answers"][0]["probability"] <= 1 assert no_answer_prediction["answers"][0]["probability"] >= 0 assert no_answer_prediction["answers"][0]["context"] == None assert no_answer_prediction["answers"][0]["document_id"] == None answers = [x["answer"] for x in no_answer_prediction["answers"]] assert answers.count(None) == 1 assert len(no_answer_prediction["answers"]) == 5 # TODO Directly compare farm and transformers reader outputs # TODO checks to see that model is responsive to input arguments e.g. context_window_size - topk def test_prediction_attributes(prediction): # TODO FARM's prediction also has no_ans_gap attributes_gold = ["question", "answers"] for ag in attributes_gold: assert ag in prediction def test_answer_attributes(prediction): # TODO Transformers answer also has meta key # TODO FARM answer has offset_start_in_doc, offset_end_in_doc answer = prediction["answers"][0] attributes_gold = ['answer', 'score', 'probability', 'context', 'offset_start', 'offset_end', 'document_id'] for ag in attributes_gold: assert ag in answer def test_context_window_size(test_docs_xs): # TODO parametrize window_size and farm/transformers reader using pytest docs = [] for d in test_docs_xs: doc = Document(id=d["meta"]["name"], text=d["text"], meta=d["meta"]) docs.append(doc) for window_size in [10, 15, 20]: farm_reader = FARMReader(model_name_or_path="distilbert-base-uncased-distilled-squad", use_gpu=False, top_k_per_sample=5, no_ans_boost=None, context_window_size=window_size) prediction = farm_reader.predict(question="Who lives in Berlin?", documents=docs, top_k=5) for answer in prediction["answers"]: # If the extracted answer is larger than the context window, the context window is expanded. # If the extracted answer is odd in length, the resulting context window is one less than context_window_size # due to rounding (See FARM's QACandidate) # TODO Currently the behaviour of context_window_size in FARMReader and TransformerReader is different if len(answer["answer"]) <= window_size: assert len(answer["context"]) in [window_size, window_size-1] else: assert len(answer["answer"]) == len(answer["context"]) # TODO Need to test transformers reader # TODO Currently the behaviour of context_window_size in FARMReader and TransformerReader is different def test_top_k(test_docs_xs): # TODO parametrize top_k and farm/transformers reader using pytest # TODO transformers reader was crashing when tested on this docs = [] for d in test_docs_xs: doc = Document(id=d["meta"]["name"], text=d["text"], meta=d["meta"]) docs.append(doc) farm_reader = FARMReader(model_name_or_path="distilbert-base-uncased-distilled-squad", use_gpu=False, top_k_per_sample=4, no_ans_boost=None, top_k_per_candidate=4) for top_k in [2, 5, 10]: prediction = farm_reader.predict(question="Who lives in Berlin?", documents=docs, top_k=top_k) assert len(prediction["answers"]) == top_k