import pytest from haystack import Document from haystack.nodes.ranker.lost_in_the_middle import LostInTheMiddleRanker @pytest.mark.unit def test_lost_in_the_middle_order_odd(): # tests that lost_in_the_middle order works with an odd number of documents docs = [Document(str(i)) for i in range(1, 10)] ranker = LostInTheMiddleRanker() result, _ = ranker.run(query="", documents=docs) assert result["documents"] expected_order = "1 3 5 7 9 8 6 4 2".split() assert all(doc.content == expected_order[idx] for idx, doc in enumerate(result["documents"])) @pytest.mark.unit def test_batch_lost_in_the_middle_order(): # tests that lost_in_the_middle order works with a batch of documents docs = [ [Document("1"), Document("2"), Document("3"), Document("4")], [Document("5"), Document("6")], [Document("7"), Document("8"), Document("9")], ] ranker = LostInTheMiddleRanker() result, _ = ranker.run_batch(queries=[""], documents=docs) assert " ".join(doc.content for doc in result["documents"][0]) == "1 3 4 2" assert " ".join(doc.content for doc in result["documents"][1]) == "5 6" assert " ".join(doc.content for doc in result["documents"][2]) == "7 9 8" @pytest.mark.unit def test_lost_in_the_middle_order_even(): # tests that lost_in_the_middle order works with an even number of documents docs = [Document(str(i)) for i in range(1, 11)] ranker = LostInTheMiddleRanker() result, _ = ranker.run(query="", documents=docs) expected_order = "1 3 5 7 9 10 8 6 4 2".split() assert all(doc.content == expected_order[idx] for idx, doc in enumerate(result["documents"])) @pytest.mark.unit def test_lost_in_the_middle_order_two_docs(): # tests that lost_in_the_middle order works with two documents ranker = LostInTheMiddleRanker() # two docs docs = [Document("1"), Document("2")] result, _ = ranker.run(query="", documents=docs) assert result["documents"][0].content == "1" assert result["documents"][1].content == "2" @pytest.mark.unit def test_lost_in_the_middle_init(): # tests that LostInTheMiddleRanker initializes with default values ranker = LostInTheMiddleRanker() assert ranker.word_count_threshold is None ranker = LostInTheMiddleRanker(word_count_threshold=10) assert ranker.word_count_threshold == 10 @pytest.mark.unit def test_lost_in_the_middle_init_invalid_word_count_threshold(): # tests that LostInTheMiddleRanker raises an error when word_count_threshold is <= 0 with pytest.raises(ValueError, match="Invalid value for word_count_threshold"): LostInTheMiddleRanker(word_count_threshold=0) with pytest.raises(ValueError, match="Invalid value for word_count_threshold"): LostInTheMiddleRanker(word_count_threshold=-5) @pytest.mark.unit def test_lost_in_the_middle_with_word_count_threshold(): # tests that lost_in_the_middle with word_count_threshold works as expected ranker = LostInTheMiddleRanker(word_count_threshold=6) docs = [Document("word" + str(i)) for i in range(1, 10)] result, _ = ranker.run(query="", documents=docs) expected_order = "word1 word3 word5 word6 word4 word2".split() assert all(doc.content == expected_order[idx] for idx, doc in enumerate(result["documents"])) ranker = LostInTheMiddleRanker(word_count_threshold=9) result, _ = ranker.run(query="", documents=docs) expected_order = "word1 word3 word5 word7 word9 word8 word6 word4 word2".split() assert all(doc.content == expected_order[idx] for idx, doc in enumerate(result["documents"])) @pytest.mark.unit def test_word_count_threshold_greater_than_total_number_of_words_returns_all_documents(): ranker = LostInTheMiddleRanker(word_count_threshold=100) docs = [Document("word" + str(i)) for i in range(1, 10)] ordered_docs = ranker.predict(query="test", documents=docs) assert len(ordered_docs) == len(docs) expected_order = "word1 word3 word5 word7 word9 word8 word6 word4 word2".split() assert all(doc.content == expected_order[idx] for idx, doc in enumerate(ordered_docs)) @pytest.mark.unit def test_empty_documents_returns_empty_list(): ranker = LostInTheMiddleRanker() assert ranker.predict(query="test", documents=[]) == [] @pytest.mark.unit def test_list_of_one_document_returns_same_document(): ranker = LostInTheMiddleRanker() doc = Document(content="test", content_type="text") assert ranker.predict(query="test", documents=[doc]) == [doc] @pytest.mark.unit def test_non_textual_documents(): # tests that merging a list of non-textual documents raises a ValueError ranker = LostInTheMiddleRanker() doc1 = Document(content="This is a textual document.") doc2 = Document(content_type="image", content="This is a non-textual document.") with pytest.raises(ValueError, match="Some provided documents are not textual"): ranker.reorder_documents([doc1, doc2]) @pytest.mark.unit @pytest.mark.parametrize("top_k", [1, 2, 3, 4, 5, 6, 7, 8, 12, 20]) def test_lost_in_the_middle_order_with_postive_top_k(top_k: int): # tests that lost_in_the_middle order works with an odd number of documents and a top_k parameter docs = [Document(str(i)) for i in range(1, 10)] ranker = LostInTheMiddleRanker() result = ranker.predict(query="irrelevant", documents=docs, top_k=top_k) if top_k < len(docs): # top_k is less than the number of documents, so only the top_k documents should be returned in LITM order assert len(result) == top_k expected_order = ranker.predict(query="irrelevant", documents=[Document(str(i)) for i in range(1, top_k + 1)]) assert result == expected_order else: # top_k is greater than the number of documents, so all documents should be returned in LITM order assert len(result) == len(docs) assert result == ranker.predict(query="irrelevant", documents=docs) @pytest.mark.unit @pytest.mark.parametrize("top_k", [-20, -10, -5, -1]) def test_lost_in_the_middle_order_with_negative_top_k(top_k: int): # tests that lost_in_the_middle order works with an odd number of documents and an invalid top_k parameter docs = [Document(str(i)) for i in range(1, 10)] ranker = LostInTheMiddleRanker() result = ranker.predict(query="irrelevant", documents=docs, top_k=top_k) if top_k < len(docs) * -1: assert len(result) == 0 # top_k is too negative, so no documents should be returned else: # top_k is negative, subtract it from the total number of documents to get the expected number of documents expected_docs = ranker.predict(query="irrelevant", documents=docs, top_k=len(docs) + top_k) assert result == expected_docs