import os from unittest.mock import patch, Mock from test.conftest import MockDocumentStore import pytest from haystack import Document, Pipeline from haystack.nodes import WebRetriever, PromptNode from haystack.nodes.retriever.link_content import html_content_handler from haystack.nodes.retriever.web import SearchResult from test.nodes.conftest import example_serperdev_response @pytest.fixture def mocked_requests(): with patch("haystack.nodes.retriever.link_content.requests") as mock_requests: mock_response = Mock() mock_requests.get.return_value = mock_response mock_response.status_code = 200 mock_response.text = "Sample content from webpage" yield mock_requests @pytest.fixture def mocked_article_extractor(): with patch("boilerpy3.extractors.ArticleExtractor.get_content", return_value="Sample content from webpage"): yield @pytest.fixture def mocked_link_content_fetcher_handler_type(): with patch( "haystack.nodes.retriever.link_content.LinkContentFetcher._get_content_type_handler", return_value=html_content_handler, ): yield @pytest.mark.unit def test_init_default_parameters(): retriever = WebRetriever(api_key="test_key") assert retriever.top_k == 5 assert retriever.mode == "snippets" assert retriever.preprocessor is None assert retriever.cache_document_store is None assert retriever.cache_index is None @pytest.mark.unit @pytest.mark.parametrize("mode", ["snippets", "raw_documents", "preprocessed_documents"]) @pytest.mark.parametrize("top_k", [1, 5, 7]) def test_retrieve_from_web_all_params(mock_web_search, mode, top_k): """ Test that the retriever returns the correct number of documents in all modes """ search_result_len = len(example_serperdev_response["organic"]) wr = WebRetriever(api_key="fake_key", top_k=top_k, mode=mode) docs = [Document("test" + str(i)) for i in range(search_result_len)] with patch("haystack.nodes.retriever.web.WebRetriever._scrape_links", return_value=docs): retrieved_docs = wr.retrieve(query="who is the boyfriend of olivia wilde?") assert isinstance(retrieved_docs, list) assert all(isinstance(doc, Document) for doc in retrieved_docs) assert len(retrieved_docs) == top_k @pytest.mark.unit def test_retrieve_from_web_invalid_query(mock_web_search): """ Test that the retriever raises an error if the query is invalid """ wr = WebRetriever(api_key="fake_key") with pytest.raises(ValueError, match="WebSearch run requires"): wr.retrieve("") with pytest.raises(ValueError, match="WebSearch run requires"): wr.retrieve(None) @pytest.mark.unit def test_prepare_links_empty_list(): """ Test that the retriever's _prepare_links method returns an empty list if the input is an empty list """ wr = WebRetriever(api_key="fake_key") result = wr._prepare_links([]) assert result == [] result = wr._prepare_links(None) assert result == [] @pytest.mark.unit def test_scrape_links_empty_list(): """ Test that the retriever's _scrape_links method returns an empty list if the input is an empty list """ wr = WebRetriever(api_key="fake_key") result = wr._scrape_links([]) assert result == [] @pytest.mark.unit def test_scrape_links_with_search_results( mocked_requests, mocked_article_extractor, mocked_link_content_fetcher_handler_type ): """ Test that the retriever's _scrape_links method returns a list of Documents if the input is a list of SearchResults """ wr = WebRetriever(api_key="fake_key") sr1 = SearchResult("https://pagesix.com", "Some text", 0.43, "1") sr2 = SearchResult("https://www.yahoo.com/", "Some text", 0.43, "2") fake_search_results = [sr1, sr2] result = wr._scrape_links(fake_search_results) assert isinstance(result, list) assert all(isinstance(r, Document) for r in result) assert len(result) == 2 @pytest.mark.unit def test_scrape_links_with_search_results_with_preprocessor( mocked_requests, mocked_article_extractor, mocked_link_content_fetcher_handler_type ): """ Test that the retriever's _scrape_links method returns a list of Documents if the input is a list of SearchResults and a preprocessor is provided """ wr = WebRetriever(api_key="fake_key", mode="preprocessed_documents") sr1 = SearchResult("https://pagesix.com", "Some text", 0.43, "1") sr2 = SearchResult("https://www.yahoo.com/", "Some text", 0.43, "2") fake_search_results = [sr1, sr2] result = wr._scrape_links(fake_search_results) assert isinstance(result, list) assert all(isinstance(r, Document) for r in result) # the documents from above SearchResult are so small that they will not be split into multiple documents # by the preprocessor assert len(result) == 2 @pytest.mark.unit def test_retrieve_checks_cache(mock_web_search): """ Test that the retriever's retrieve method checks the cache """ wr = WebRetriever(api_key="fake_key", mode="preprocessed_documents") with patch.object(wr, "_check_cache", return_value=([], [])) as mock_check_cache: wr.retrieve("query") # assert cache is checked mock_check_cache.assert_called() @pytest.mark.unit def test_retrieve_no_cache_checks_in_snippet_mode(mock_web_search): """ Test that the retriever's retrieve method does not check the cache if the mode is snippets """ wr = WebRetriever(api_key="fake_key", mode="snippets") with patch.object(wr, "_check_cache", return_value=([], [])) as mock_check_cache: wr.retrieve("query") # assert cache is NOT checked mock_check_cache.assert_not_called() @pytest.mark.unit def test_retrieve_batch(mock_web_search): """ Test that the retriever's retrieve_batch method returns a list of lists of Documents """ queries = ["query1", "query2"] wr = WebRetriever(api_key="fake_key", mode="preprocessed_documents") web_docs = [Document("doc1"), Document("doc2"), Document("doc3")] with patch("haystack.nodes.retriever.web.WebRetriever._scrape_links", return_value=web_docs): result = wr.retrieve_batch(queries) assert len(result) == len(queries) # check that the result is a list of lists of Documents assert all(isinstance(docs, list) for docs in result) assert all(isinstance(doc, Document) for docs in result for doc in docs) # check that the result is a list of lists of Documents, so that the number of Documents # is equal to the number of queries * number of documents retrieved per query assert len([doc for docs in result for doc in docs]) == len(web_docs) * len(queries) @pytest.mark.unit def test_retrieve_uses_cache(mock_web_search): """ Test that the retriever's retrieve method uses the cache if it is available """ wr = WebRetriever(api_key="fake_key", mode="raw_documents", cache_document_store=MockDocumentStore()) cached_links = [ SearchResult("https://pagesix.com", "Some text", 0.43, "1"), SearchResult("https://www.yahoo.com/", "Some text", 0.43, "2"), ] cached_docs = [Document("doc1"), Document("doc2")] with patch.object(wr, "_check_cache", return_value=(cached_links, cached_docs)) as mock_check_cache, patch.object( wr, "_save_to_cache" ) as mock_save_cache, patch.object(wr, "_scrape_links", return_value=[]): result = wr.retrieve("query") # checking cache is always called mock_check_cache.assert_called() # cache save is called but with empty list of documents mock_save_cache.assert_called() assert mock_save_cache.call_args[0][0] == [] assert result == cached_docs @pytest.mark.unit def test_retrieve_saves_to_cache(mock_web_search): """ Test that the retriever's retrieve method saves to the cache if it is available """ wr = WebRetriever(api_key="fake_key", cache_document_store=MockDocumentStore(), mode="preprocessed_documents") web_docs = [Document("doc1"), Document("doc2"), Document("doc3")] with patch.object(wr, "_save_to_cache") as mock_save_cache, patch.object( wr, "_scrape_links", return_value=web_docs ): wr.retrieve("query") mock_save_cache.assert_called() @pytest.mark.integration @pytest.mark.skipif( not os.environ.get("SERPERDEV_API_KEY", None), reason="Please export an env var called SERPERDEV_API_KEY containing the serper.dev API key to run this test.", ) @pytest.mark.skipif( not os.environ.get("OPENAI_API_KEY", None), reason="Please export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.", ) @pytest.mark.parametrize("top_k", [2, 4]) def test_top_k_parameter_in_pipeline(top_k): """ Test that the top_k parameter works in the pipeline """ prompt_node = PromptNode( "gpt-3.5-turbo", api_key=os.environ.get("OPENAI_API_KEY"), max_length=256, default_prompt_template="question-answering-with-document-scores", ) retriever = WebRetriever(api_key=os.environ.get("SERPERDEV_API_KEY")) pipe = Pipeline() pipe.add_node(component=retriever, name="WebRetriever", inputs=["Query"]) pipe.add_node(component=prompt_node, name="QAwithScoresPrompt", inputs=["WebRetriever"]) result = pipe.run(query="What year was Obama president", params={"WebRetriever": {"top_k": top_k}}) assert len(result["results"]) == top_k